/* cbrt.c * * Cube root * * * * SYNOPSIS: * * double x, y, cbrt(); * * y = cbrt( x ); * * * * DESCRIPTION: * * Returns the cube root of the argument, which may be negative. * * Range reduction involves determining the power of 2 of * the argument. A polynomial of degree 2 applied to the * mantissa, and multiplication by the cube root of 1, 2, or 4 * approximates the root to within about 0.1%. Then Newton's * iteration is used three times to converge to an accurate * result. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,10 200000 1.8e-17 6.2e-18 * IEEE 0,1e308 30000 1.5e-16 5.0e-17 * */ /* cbrt.c */ /* Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1991, 2000 by Stephen L. Moshier */ #include "mconf.h" static double CBRT2 = 1.2599210498948731647672; static double CBRT4 = 1.5874010519681994747517; static double CBRT2I = 0.79370052598409973737585; static double CBRT4I = 0.62996052494743658238361; #ifdef ANSIPROT extern double frexp ( double, int * ); extern double ldexp ( double, int ); extern int isnan ( double ); extern int isfinite ( double ); #else double frexp(), ldexp(); int isnan(), isfinite(); #endif double cbrt(x) double x; { int e, rem, sign; double z; #ifdef NANS if( isnan(x) ) return x; #endif #ifdef INFINITIES if( !isfinite(x) ) return x; #endif if( x == 0 ) return( x ); if( x > 0 ) sign = 1; else { sign = -1; x = -x; } z = x; /* extract power of 2, leaving * mantissa between 0.5 and 1 */ x = frexp( x, &e ); /* Approximate cube root of number between .5 and 1, * peak relative error = 9.2e-6 */ x = (((-1.3466110473359520655053e-1 * x + 5.4664601366395524503440e-1) * x - 9.5438224771509446525043e-1) * x + 1.1399983354717293273738e0 ) * x + 4.0238979564544752126924e-1; /* exponent divided by 3 */ if( e >= 0 ) { rem = e; e /= 3; rem -= 3*e; if( rem == 1 ) x *= CBRT2; else if( rem == 2 ) x *= CBRT4; } /* argument less than 1 */ else { e = -e; rem = e; e /= 3; rem -= 3*e; if( rem == 1 ) x *= CBRT2I; else if( rem == 2 ) x *= CBRT4I; e = -e; } /* multiply by power of 2 */ x = ldexp( x, e ); /* Newton iteration */ x -= ( x - (z/(x*x)) )*0.33333333333333333333; #ifdef DEC x -= ( x - (z/(x*x)) )/3.0; #else x -= ( x - (z/(x*x)) )*0.33333333333333333333; #endif if( sign < 0 ) x = -x; return(x); }