/* ellpe.c * * Complete elliptic integral of the second kind * * * * SYNOPSIS: * * double m1, y, ellpe(); * * y = ellpe( m1 ); * * * * DESCRIPTION: * * Approximates the integral * * * pi/2 * - * | | 2 * E(m) = | sqrt( 1 - m sin t ) dt * | | * - * 0 * * Where m = 1 - m1, using the approximation * * P(x) - x log x Q(x). * * Though there are no singularities, the argument m1 is used * rather than m for compatibility with ellpk(). * * E(1) = 1; E(0) = pi/2. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC 0, 1 13000 3.1e-17 9.4e-18 * IEEE 0, 1 10000 2.1e-16 7.3e-17 * * * ERROR MESSAGES: * * message condition value returned * ellpe domain x<0, x>1 0.0 * */ /* ellpe.c */ /* Elliptic integral of second kind */ /* Cephes Math Library, Release 2.8: June, 2000 Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier */ #include "mconf.h" #ifdef UNK static double P[] = { 1.53552577301013293365E-4, 2.50888492163602060990E-3, 8.68786816565889628429E-3, 1.07350949056076193403E-2, 7.77395492516787092951E-3, 7.58395289413514708519E-3, 1.15688436810574127319E-2, 2.18317996015557253103E-2, 5.68051945617860553470E-2, 4.43147180560990850618E-1, 1.00000000000000000299E0 }; static double Q[] = { 3.27954898576485872656E-5, 1.00962792679356715133E-3, 6.50609489976927491433E-3, 1.68862163993311317300E-2, 2.61769742454493659583E-2, 3.34833904888224918614E-2, 4.27180926518931511717E-2, 5.85936634471101055642E-2, 9.37499997197644278445E-2, 2.49999999999888314361E-1 }; #endif #ifdef DEC static unsigned short P[] = { 0035041,0001364,0141572,0117555, 0036044,0066032,0130027,0033404, 0036416,0053617,0064456,0102632, 0036457,0161100,0061177,0122612, 0036376,0136251,0012403,0124162, 0036370,0101316,0151715,0131613, 0036475,0105477,0050317,0133272, 0036662,0154232,0024645,0171552, 0037150,0126220,0047054,0030064, 0037742,0162057,0167645,0165612, 0040200,0000000,0000000,0000000 }; static unsigned short Q[] = { 0034411,0106743,0115771,0055462, 0035604,0052575,0155171,0045540, 0036325,0030424,0064332,0167756, 0036612,0052366,0063006,0115175, 0036726,0070430,0004533,0124654, 0037011,0022741,0030675,0030711, 0037056,0174452,0127062,0132122, 0037157,0177750,0142041,0072523, 0037277,0177777,0173137,0002627, 0037577,0177777,0177777,0101101 }; #endif #ifdef IBMPC static unsigned short P[] = { 0x53ee,0x986f,0x205e,0x3f24, 0xe6e0,0x5602,0x8d83,0x3f64, 0xd0b3,0xed25,0xcaf1,0x3f81, 0xf4b1,0x0c4f,0xfc48,0x3f85, 0x750e,0x22a0,0xd795,0x3f7f, 0xb671,0xda79,0x1059,0x3f7f, 0xf6d7,0xea19,0xb167,0x3f87, 0xbe6d,0x4534,0x5b13,0x3f96, 0x8607,0x09c5,0x1592,0x3fad, 0xbd71,0xfdf4,0x5c85,0x3fdc, 0x0000,0x0000,0x0000,0x3ff0 }; static unsigned short Q[] = { 0x2b66,0x737f,0x31bc,0x3f01, 0x296c,0xbb4f,0x8aaf,0x3f50, 0x5dfe,0x8d1b,0xa622,0x3f7a, 0xd350,0xccc0,0x4a9e,0x3f91, 0x7535,0x012b,0xce23,0x3f9a, 0xa639,0x2637,0x24bc,0x3fa1, 0x568a,0x55c6,0xdf25,0x3fa5, 0x2eaa,0x1884,0xfffd,0x3fad, 0xe0b3,0xfecb,0xffff,0x3fb7, 0xf048,0xffff,0xffff,0x3fcf }; #endif #ifdef MIEEE static unsigned short P[] = { 0x3f24,0x205e,0x986f,0x53ee, 0x3f64,0x8d83,0x5602,0xe6e0, 0x3f81,0xcaf1,0xed25,0xd0b3, 0x3f85,0xfc48,0x0c4f,0xf4b1, 0x3f7f,0xd795,0x22a0,0x750e, 0x3f7f,0x1059,0xda79,0xb671, 0x3f87,0xb167,0xea19,0xf6d7, 0x3f96,0x5b13,0x4534,0xbe6d, 0x3fad,0x1592,0x09c5,0x8607, 0x3fdc,0x5c85,0xfdf4,0xbd71, 0x3ff0,0x0000,0x0000,0x0000 }; static unsigned short Q[] = { 0x3f01,0x31bc,0x737f,0x2b66, 0x3f50,0x8aaf,0xbb4f,0x296c, 0x3f7a,0xa622,0x8d1b,0x5dfe, 0x3f91,0x4a9e,0xccc0,0xd350, 0x3f9a,0xce23,0x012b,0x7535, 0x3fa1,0x24bc,0x2637,0xa639, 0x3fa5,0xdf25,0x55c6,0x568a, 0x3fad,0xfffd,0x1884,0x2eaa, 0x3fb7,0xffff,0xfecb,0xe0b3, 0x3fcf,0xffff,0xffff,0xf048 }; #endif #ifdef ANSIPROT extern double polevl ( double, void *, int ); extern double log ( double ); #else double polevl(), log(); #endif double ellpe(x) double x; { if( (x <= 0.0) || (x > 1.0) ) { if( x == 0.0 ) return( 1.0 ); mtherr( "ellpe", DOMAIN ); return( 0.0 ); } return( polevl(x,P,10) - log(x) * (x * polevl(x,Q,9)) ); }