/* expn.c * * Exponential integral En * * * * SYNOPSIS: * * int n; * double x, y, expn(); * * y = expn( n, x ); * * * * DESCRIPTION: * * Evaluates the exponential integral * * inf. * - * | | -xt * | e * E (x) = | ---- dt. * n | n * | | t * - * 1 * * * Both n and x must be nonnegative. * * The routine employs either a power series, a continued * fraction, or an asymptotic formula depending on the * relative values of n and x. * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC 0, 30 5000 2.0e-16 4.6e-17 * IEEE 0, 30 10000 1.7e-15 3.6e-16 * */ /* expn.c */ /* Cephes Math Library Release 2.8: June, 2000 Copyright 1985, 2000 by Stephen L. Moshier */ #include "mconf.h" #ifdef ANSIPROT extern double pow ( double, double ); extern double gamma ( double ); extern double log ( double ); extern double exp ( double ); extern double fabs ( double ); #else double pow(), gamma(), log(), exp(), fabs(); #endif #define EUL 0.57721566490153286060 #define BIG 1.44115188075855872E+17 extern double MAXNUM, MACHEP, MAXLOG; double expn( n, x ) int n; double x; { double ans, r, t, yk, xk; double pk, pkm1, pkm2, qk, qkm1, qkm2; double psi, z; int i, k; static double big = BIG; if( n < 0 ) goto domerr; if( x < 0 ) { domerr: mtherr( "expn", DOMAIN ); return( MAXNUM ); } if( x > MAXLOG ) return( 0.0 ); if( x == 0.0 ) { if( n < 2 ) { mtherr( "expn", SING ); return( MAXNUM ); } else return( 1.0/(n-1.0) ); } if( n == 0 ) return( exp(-x)/x ); /* expn.c */ /* Expansion for large n */ if( n > 5000 ) { xk = x + n; yk = 1.0 / (xk * xk); t = n; ans = yk * t * (6.0 * x * x - 8.0 * t * x + t * t); ans = yk * (ans + t * (t - 2.0 * x)); ans = yk * (ans + t); ans = (ans + 1.0) * exp( -x ) / xk; goto done; } if( x > 1.0 ) goto cfrac; /* expn.c */ /* Power series expansion */ psi = -EUL - log(x); for( i=1; i MACHEP ); k = xk; t = n; r = n - 1; ans = (pow(z, r) * psi / gamma(t)) - ans; goto done; /* expn.c */ /* continued fraction */ cfrac: k = 1; pkm2 = 1.0; qkm2 = x; pkm1 = 1.0; qkm1 = x + n; ans = pkm1/qkm1; do { k += 1; if( k & 1 ) { yk = 1.0; xk = n + (k-1)/2; } else { yk = x; xk = k/2; } pk = pkm1 * yk + pkm2 * xk; qk = qkm1 * yk + qkm2 * xk; if( qk != 0 ) { r = pk/qk; t = fabs( (ans - r)/r ); ans = r; } else t = 1.0; pkm2 = pkm1; pkm1 = pk; qkm2 = qkm1; qkm1 = qk; if( fabs(pk) > big ) { pkm2 /= big; pkm1 /= big; qkm2 /= big; qkm1 /= big; } } while( t > MACHEP ); ans *= exp( -x ); done: return( ans ); }