/* airy.c * * Airy function * * * * SYNOPSIS: * * float x, ai, aip, bi, bip; * int airyf(); * * airyf( x, _&ai, _&aip, _&bi, _&bip ); * * * * DESCRIPTION: * * Solution of the differential equation * * y"(x) = xy. * * The function returns the two independent solutions Ai, Bi * and their first derivatives Ai'(x), Bi'(x). * * Evaluation is by power series summation for small x, * by rational minimax approximations for large x. * * * * ACCURACY: * Error criterion is absolute when function <= 1, relative * when function > 1, except * denotes relative error criterion. * For large negative x, the absolute error increases as x^1.5. * For large positive x, the relative error increases as x^1.5. * * Arithmetic domain function # trials peak rms * IEEE -10, 0 Ai 50000 7.0e-7 1.2e-7 * IEEE 0, 10 Ai 50000 9.9e-6* 6.8e-7* * IEEE -10, 0 Ai' 50000 2.4e-6 3.5e-7 * IEEE 0, 10 Ai' 50000 8.7e-6* 6.2e-7* * IEEE -10, 10 Bi 100000 2.2e-6 2.6e-7 * IEEE -10, 10 Bi' 50000 2.2e-6 3.5e-7 * */ /* airy.c */ /* Cephes Math Library Release 2.2: June, 1992 Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include "mconf.h" static float c1 = 0.35502805388781723926; static float c2 = 0.258819403792806798405; static float sqrt3 = 1.732050807568877293527; static float sqpii = 5.64189583547756286948E-1; extern float PIF; extern float MAXNUMF, MACHEPF; #define MAXAIRY 25.77 /* Note, these expansions are for double precision accuracy; * they have not yet been redesigned for single precision. */ static float AN[8] = { 3.46538101525629032477e-1, 1.20075952739645805542e1, 7.62796053615234516538e1, 1.68089224934630576269e2, 1.59756391350164413639e2, 7.05360906840444183113e1, 1.40264691163389668864e1, 9.99999999999999995305e-1, }; static float AD[8] = { 5.67594532638770212846e-1, 1.47562562584847203173e1, 8.45138970141474626562e1, 1.77318088145400459522e2, 1.64234692871529701831e2, 7.14778400825575695274e1, 1.40959135607834029598e1, 1.00000000000000000470e0, }; static float APN[8] = { 6.13759184814035759225e-1, 1.47454670787755323881e1, 8.20584123476060982430e1, 1.71184781360976385540e2, 1.59317847137141783523e2, 6.99778599330103016170e1, 1.39470856980481566958e1, 1.00000000000000000550e0, }; static float APD[8] = { 3.34203677749736953049e-1, 1.11810297306158156705e1, 7.11727352147859965283e1, 1.58778084372838313640e2, 1.53206427475809220834e2, 6.86752304592780337944e1, 1.38498634758259442477e1, 9.99999999999999994502e-1, }; static float BN16[5] = { -2.53240795869364152689e-1, 5.75285167332467384228e-1, -3.29907036873225371650e-1, 6.44404068948199951727e-2, -3.82519546641336734394e-3, }; static float BD16[5] = { /* 1.00000000000000000000e0,*/ -7.15685095054035237902e0, 1.06039580715664694291e1, -5.23246636471251500874e0, 9.57395864378383833152e-1, -5.50828147163549611107e-2, }; static float BPPN[5] = { 4.65461162774651610328e-1, -1.08992173800493920734e0, 6.38800117371827987759e-1, -1.26844349553102907034e-1, 7.62487844342109852105e-3, }; static float BPPD[5] = { /* 1.00000000000000000000e0,*/ -8.70622787633159124240e0, 1.38993162704553213172e1, -7.14116144616431159572e0, 1.34008595960680518666e0, -7.84273211323341930448e-2, }; static float AFN[9] = { -1.31696323418331795333e-1, -6.26456544431912369773e-1, -6.93158036036933542233e-1, -2.79779981545119124951e-1, -4.91900132609500318020e-2, -4.06265923594885404393e-3, -1.59276496239262096340e-4, -2.77649108155232920844e-6, -1.67787698489114633780e-8, }; static float AFD[9] = { /* 1.00000000000000000000e0,*/ 1.33560420706553243746e1, 3.26825032795224613948e1, 2.67367040941499554804e1, 9.18707402907259625840e0, 1.47529146771666414581e0, 1.15687173795188044134e-1, 4.40291641615211203805e-3, 7.54720348287414296618e-5, 4.51850092970580378464e-7, }; static float AGN[11] = { 1.97339932091685679179e-2, 3.91103029615688277255e-1, 1.06579897599595591108e0, 9.39169229816650230044e-1, 3.51465656105547619242e-1, 6.33888919628925490927e-2, 5.85804113048388458567e-3, 2.82851600836737019778e-4, 6.98793669997260967291e-6, 8.11789239554389293311e-8, 3.41551784765923618484e-10, }; static float AGD[10] = { /* 1.00000000000000000000e0,*/ 9.30892908077441974853e0, 1.98352928718312140417e1, 1.55646628932864612953e1, 5.47686069422975497931e0, 9.54293611618961883998e-1, 8.64580826352392193095e-2, 4.12656523824222607191e-3, 1.01259085116509135510e-4, 1.17166733214413521882e-6, 4.91834570062930015649e-9, }; static float APFN[9] = { 1.85365624022535566142e-1, 8.86712188052584095637e-1, 9.87391981747398547272e-1, 4.01241082318003734092e-1, 7.10304926289631174579e-2, 5.90618657995661810071e-3, 2.33051409401776799569e-4, 4.08718778289035454598e-6, 2.48379932900442457853e-8, }; static float APFD[9] = { /* 1.00000000000000000000e0,*/ 1.47345854687502542552e1, 3.75423933435489594466e1, 3.14657751203046424330e1, 1.09969125207298778536e1, 1.78885054766999417817e0, 1.41733275753662636873e-1, 5.44066067017226003627e-3, 9.39421290654511171663e-5, 5.65978713036027009243e-7, }; static float APGN[11] = { -3.55615429033082288335e-2, -6.37311518129435504426e-1, -1.70856738884312371053e0, -1.50221872117316635393e0, -5.63606665822102676611e-1, -1.02101031120216891789e-1, -9.48396695961445269093e-3, -4.60325307486780994357e-4, -1.14300836484517375919e-5, -1.33415518685547420648e-7, -5.63803833958893494476e-10, }; static float APGD[11] = { /* 1.00000000000000000000e0,*/ 9.85865801696130355144e0, 2.16401867356585941885e1, 1.73130776389749389525e1, 6.17872175280828766327e0, 1.08848694396321495475e0, 9.95005543440888479402e-2, 4.78468199683886610842e-3, 1.18159633322838625562e-4, 1.37480673554219441465e-6, 5.79912514929147598821e-9, }; #define fabsf(x) ( (x) < 0 ? -(x) : (x) ) #ifdef ANSIC float polevlf(float, float *, int); float p1evlf(float, float *, int); float sinf(float), cosf(float), expf(float), sqrtf(float); int airyf( float xx, float *ai, float *aip, float *bi, float *bip ) #else float polevlf(), p1evlf(), sinf(), cosf(), expf(), sqrtf(); int airyf( xx, ai, aip, bi, bip ) double xx; float *ai, *aip, *bi, *bip; #endif { float x, z, zz, t, f, g, uf, ug, k, zeta, theta; int domflg; x = xx; domflg = 0; if( x > MAXAIRY ) { *ai = 0; *aip = 0; *bi = MAXNUMF; *bip = MAXNUMF; return(-1); } if( x < -2.09 ) { domflg = 15; t = sqrtf(-x); zeta = -2.0 * x * t / 3.0; t = sqrtf(t); k = sqpii / t; z = 1.0/zeta; zz = z * z; uf = 1.0 + zz * polevlf( zz, AFN, 8 ) / p1evlf( zz, AFD, 9 ); ug = z * polevlf( zz, AGN, 10 ) / p1evlf( zz, AGD, 10 ); theta = zeta + 0.25 * PIF; f = sinf( theta ); g = cosf( theta ); *ai = k * (f * uf - g * ug); *bi = k * (g * uf + f * ug); uf = 1.0 + zz * polevlf( zz, APFN, 8 ) / p1evlf( zz, APFD, 9 ); ug = z * polevlf( zz, APGN, 10 ) / p1evlf( zz, APGD, 10 ); k = sqpii * t; *aip = -k * (g * uf + f * ug); *bip = k * (f * uf - g * ug); return(0); } if( x >= 2.09 ) /* cbrt(9) */ { domflg = 5; t = sqrtf(x); zeta = 2.0 * x * t / 3.0; g = expf( zeta ); t = sqrtf(t); k = 2.0 * t * g; z = 1.0/zeta; f = polevlf( z, AN, 7 ) / polevlf( z, AD, 7 ); *ai = sqpii * f / k; k = -0.5 * sqpii * t / g; f = polevlf( z, APN, 7 ) / polevlf( z, APD, 7 ); *aip = f * k; if( x > 8.3203353 ) /* zeta > 16 */ { f = z * polevlf( z, BN16, 4 ) / p1evlf( z, BD16, 5 ); k = sqpii * g; *bi = k * (1.0 + f) / t; f = z * polevlf( z, BPPN, 4 ) / p1evlf( z, BPPD, 5 ); *bip = k * t * (1.0 + f); return(0); } } f = 1.0; g = x; t = 1.0; uf = 1.0; ug = x; k = 1.0; z = x * x * x; while( t > MACHEPF ) { uf *= z; k += 1.0; uf /=k; ug *= z; k += 1.0; ug /=k; uf /=k; f += uf; k += 1.0; ug /=k; g += ug; t = fabsf(uf/f); } uf = c1 * f; ug = c2 * g; if( (domflg & 1) == 0 ) *ai = uf - ug; if( (domflg & 2) == 0 ) *bi = sqrt3 * (uf + ug); /* the deriviative of ai */ k = 4.0; uf = x * x/2.0; ug = z/3.0; f = uf; g = 1.0 + ug; uf /= 3.0; t = 1.0; while( t > MACHEPF ) { uf *= z; ug /=k; k += 1.0; ug *= z; uf /=k; f += uf; k += 1.0; ug /=k; uf /=k; g += ug; k += 1.0; t = fabsf(ug/g); } uf = c1 * f; ug = c2 * g; if( (domflg & 4) == 0 ) *aip = uf - ug; if( (domflg & 8) == 0 ) *bip = sqrt3 * (uf + ug); return(0); }