/* clogf.c * * Complex natural logarithm * * * * SYNOPSIS: * * void clogf(); * cmplxf z, w; * * clogf( &z, &w ); * * * * DESCRIPTION: * * Returns complex logarithm to the base e (2.718...) of * the complex argument x. * * If z = x + iy, r = sqrt( x**2 + y**2 ), * then * w = log(r) + i arctan(y/x). * * The arctangent ranges from -PI to +PI. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 1.9e-6 6.2e-8 * * Larger relative error can be observed for z near 1 +i0. * In IEEE arithmetic the peak absolute error is 3.1e-7. * */ #include "mconf.h" extern float MAXNUMF, MACHEPF, PIF, PIO2F; #ifdef ANSIC float cabsf(cmplxf *), sqrtf(float), logf(float), atan2f(float, float); float expf(float), sinf(float), cosf(float); float coshf(float), sinhf(float), asinf(float); float ctansf(cmplxf *), redupif(float); void cchshf( float, float *, float * ); void caddf( cmplxf *, cmplxf *, cmplxf * ); void csqrtf( cmplxf *, cmplxf * ); #else float cabsf(), sqrtf(), logf(), atan2f(); float expf(), sinf(), cosf(); float coshf(), sinhf(), asinf(); float ctansf(), redupif(); void cchshf(), csqrtf(), caddf(); #endif #define fabsf(x) ( (x) < 0 ? -(x) : (x) ) void clogf( z, w ) register cmplxf *z, *w; { float p, rr; /*rr = sqrtf( z->r * z->r + z->i * z->i );*/ rr = cabsf(z); p = logf(rr); #if ANSIC rr = atan2f( z->i, z->r ); #else rr = atan2f( z->r, z->i ); if( rr > PIF ) rr -= PIF + PIF; #endif w->i = rr; w->r = p; } /* cexpf() * * Complex exponential function * * * * SYNOPSIS: * * void cexpf(); * cmplxf z, w; * * cexpf( &z, &w ); * * * * DESCRIPTION: * * Returns the exponential of the complex argument z * into the complex result w. * * If * z = x + iy, * r = exp(x), * * then * * w = r cos y + i r sin y. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 1.4e-7 4.5e-8 * */ void cexpf( z, w ) register cmplxf *z, *w; { float r; r = expf( z->r ); w->r = r * cosf( z->i ); w->i = r * sinf( z->i ); } /* csinf() * * Complex circular sine * * * * SYNOPSIS: * * void csinf(); * cmplxf z, w; * * csinf( &z, &w ); * * * * DESCRIPTION: * * If * z = x + iy, * * then * * w = sin x cosh y + i cos x sinh y. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 1.9e-7 5.5e-8 * */ void csinf( z, w ) register cmplxf *z, *w; { float ch, sh; cchshf( z->i, &ch, &sh ); w->r = sinf( z->r ) * ch; w->i = cosf( z->r ) * sh; } /* calculate cosh and sinh */ #ifdef ANSIC void cchshf( float xx, float *c, float *s ) #else void cchshf( xx, c, s ) double xx; float *c, *s; #endif { float x, e, ei; x = xx; if( fabsf(x) <= 0.5f ) { *c = coshf(x); *s = sinhf(x); } else { e = expf(x); ei = 0.5f/e; e = 0.5f * e; *s = e - ei; *c = e + ei; } } /* ccosf() * * Complex circular cosine * * * * SYNOPSIS: * * void ccosf(); * cmplxf z, w; * * ccosf( &z, &w ); * * * * DESCRIPTION: * * If * z = x + iy, * * then * * w = cos x cosh y - i sin x sinh y. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 1.8e-7 5.5e-8 */ void ccosf( z, w ) register cmplxf *z, *w; { float ch, sh; cchshf( z->i, &ch, &sh ); w->r = cosf( z->r ) * ch; w->i = -sinf( z->r ) * sh; } /* ctanf() * * Complex circular tangent * * * * SYNOPSIS: * * void ctanf(); * cmplxf z, w; * * ctanf( &z, &w ); * * * * DESCRIPTION: * * If * z = x + iy, * * then * * sin 2x + i sinh 2y * w = --------------------. * cos 2x + cosh 2y * * On the real axis the denominator is zero at odd multiples * of PI/2. The denominator is evaluated by its Taylor * series near these points. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 3.3e-7 5.1e-8 */ void ctanf( z, w ) register cmplxf *z, *w; { float d; d = cosf( 2.0f * z->r ) + coshf( 2.0f * z->i ); if( fabsf(d) < 0.25f ) d = ctansf(z); if( d == 0.0f ) { mtherrf( "ctanf", OVERFLOW ); w->r = MAXNUMF; w->i = MAXNUMF; return; } w->r = sinf( 2.0f * z->r ) / d; w->i = sinhf( 2.0f * z->i ) / d; } /* ccotf() * * Complex circular cotangent * * * * SYNOPSIS: * * void ccotf(); * cmplxf z, w; * * ccotf( &z, &w ); * * * * DESCRIPTION: * * If * z = x + iy, * * then * * sin 2x - i sinh 2y * w = --------------------. * cosh 2y - cos 2x * * On the real axis, the denominator has zeros at even * multiples of PI/2. Near these points it is evaluated * by a Taylor series. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 3.6e-7 5.7e-8 * Also tested by ctan * ccot = 1 + i0. */ void ccotf( z, w ) register cmplxf *z, *w; { float d; d = coshf(2.0f * z->i) - cosf(2.0f * z->r); if( fabsf(d) < 0.25f ) d = ctansf(z); if( d == 0.0f ) { mtherrf( "ccotf", OVERFLOW ); w->r = MAXNUMF; w->i = MAXNUMF; return; } d = 1.0f/d; w->r = sinf( 2.0f * z->r ) * d; w->i = -sinhf( 2.0f * z->i ) * d; } /* Program to subtract nearest integer multiple of PI */ /* extended precision value of PI: */ static double DP1 = 3.140625; static double DP2 = 9.67502593994140625E-4; static double DP3 = 1.509957990978376432E-7; #ifdef ANSIC float redupif(float xx) #else float redupif(xx) double xx; #endif { float x, t; long i; x = xx; t = x/PIF; if( t >= 0.0f ) t += 0.5f; else t -= 0.5f; i = t; /* the multiple */ t = i; t = ((x - t * DP1) - t * DP2) - t * DP3; return(t); } /* Taylor series expansion for cosh(2y) - cos(2x) */ float ctansf(z) cmplxf *z; { float f, x, x2, y, y2, rn, t, d; x = fabsf( 2.0f * z->r ); y = fabsf( 2.0f * z->i ); x = redupif(x); x = x * x; y = y * y; x2 = 1.0f; y2 = 1.0f; f = 1.0f; rn = 0.0f; d = 0.0f; do { rn += 1.0f; f *= rn; rn += 1.0f; f *= rn; x2 *= x; y2 *= y; t = y2 + x2; t /= f; d += t; rn += 1.0f; f *= rn; rn += 1.0f; f *= rn; x2 *= x; y2 *= y; t = y2 - x2; t /= f; d += t; } while( fabsf(t/d) > MACHEPF ); return(d); } /* casinf() * * Complex circular arc sine * * * * SYNOPSIS: * * void casinf(); * cmplxf z, w; * * casinf( &z, &w ); * * * * DESCRIPTION: * * Inverse complex sine: * * 2 * w = -i clog( iz + csqrt( 1 - z ) ). * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 1.1e-5 1.5e-6 * Larger relative error can be observed for z near zero. * */ void casinf( z, w ) cmplxf *z, *w; { float x, y; static cmplxf ca, ct, zz, z2; /* float cn, n; static float a, b, s, t, u, v, y2; static cmplxf sum; */ x = z->r; y = z->i; if( y == 0.0f ) { if( fabsf(x) > 1.0f ) { w->r = PIO2F; w->i = 0.0f; mtherrf( "casinf", DOMAIN ); } else { w->r = asinf(x); w->i = 0.0f; } return; } /* Power series expansion */ /* b = cabsf(z); if( b < 0.125 ) { z2.r = (x - y) * (x + y); z2.i = 2.0 * x * y; cn = 1.0; n = 1.0; ca.r = x; ca.i = y; sum.r = x; sum.i = y; do { ct.r = z2.r * ca.r - z2.i * ca.i; ct.i = z2.r * ca.i + z2.i * ca.r; ca.r = ct.r; ca.i = ct.i; cn *= n; n += 1.0; cn /= n; n += 1.0; b = cn/n; ct.r *= b; ct.i *= b; sum.r += ct.r; sum.i += ct.i; b = fabsf(ct.r) + fabsf(ct.i); } while( b > MACHEPF ); w->r = sum.r; w->i = sum.i; return; } */ ca.r = x; ca.i = y; ct.r = -ca.i; /* iz */ ct.i = ca.r; /* sqrt( 1 - z*z) */ /* cmul( &ca, &ca, &zz ) */ zz.r = (ca.r - ca.i) * (ca.r + ca.i); /*x * x - y * y */ zz.i = 2.0f * ca.r * ca.i; zz.r = 1.0f - zz.r; zz.i = -zz.i; csqrtf( &zz, &z2 ); caddf( &z2, &ct, &zz ); clogf( &zz, &zz ); w->r = zz.i; /* mult by 1/i = -i */ w->i = -zz.r; return; } /* cacosf() * * Complex circular arc cosine * * * * SYNOPSIS: * * void cacosf(); * cmplxf z, w; * * cacosf( &z, &w ); * * * * DESCRIPTION: * * * w = arccos z = PI/2 - arcsin z. * * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 9.2e-6 1.2e-6 * */ void cacosf( z, w ) cmplxf *z, *w; { casinf( z, w ); w->r = PIO2F - w->r; w->i = -w->i; } /* catan() * * Complex circular arc tangent * * * * SYNOPSIS: * * void catan(); * cmplxf z, w; * * catan( &z, &w ); * * * * DESCRIPTION: * * If * z = x + iy, * * then * 1 ( 2x ) * Re w = - arctan(-----------) + k PI * 2 ( 2 2) * (1 - x - y ) * * ( 2 2) * 1 (x + (y+1) ) * Im w = - log(------------) * 4 ( 2 2) * (x + (y-1) ) * * Where k is an arbitrary integer. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 2.3e-6 5.2e-8 * */ void catanf( z, w ) cmplxf *z, *w; { float a, t, x, x2, y; x = z->r; y = z->i; if( (x == 0.0f) && (y > 1.0f) ) goto ovrf; x2 = x * x; a = 1.0f - x2 - (y * y); if( a == 0.0f ) goto ovrf; #if ANSIC t = 0.5f * atan2f( 2.0f * x, a ); #else t = 0.5f * atan2f( a, 2.0f * x ); #endif w->r = redupif( t ); t = y - 1.0f; a = x2 + (t * t); if( a == 0.0f ) goto ovrf; t = y + 1.0f; a = (x2 + (t * t))/a; w->i = 0.25f*logf(a); return; ovrf: mtherrf( "catanf", OVERFLOW ); w->r = MAXNUMF; w->i = MAXNUMF; }