/* ellpef.c * * Complete elliptic integral of the second kind * * * * SYNOPSIS: * * float m1, y, ellpef(); * * y = ellpef( m1 ); * * * * DESCRIPTION: * * Approximates the integral * * * pi/2 * - * | | 2 * E(m) = | sqrt( 1 - m sin t ) dt * | | * - * 0 * * Where m = 1 - m1, using the approximation * * P(x) - x log x Q(x). * * Though there are no singularities, the argument m1 is used * rather than m for compatibility with ellpk(). * * E(1) = 1; E(0) = pi/2. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0, 1 30000 1.1e-7 3.9e-8 * * * ERROR MESSAGES: * * message condition value returned * ellpef domain x<0, x>1 0.0 * */ /* ellpe.c */ /* Elliptic integral of second kind */ /* Cephes Math Library, Release 2.1: February, 1989 Copyright 1984, 1987, 1989 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include "mconf.h" static float P[] = { 1.53552577301013293365E-4, 2.50888492163602060990E-3, 8.68786816565889628429E-3, 1.07350949056076193403E-2, 7.77395492516787092951E-3, 7.58395289413514708519E-3, 1.15688436810574127319E-2, 2.18317996015557253103E-2, 5.68051945617860553470E-2, 4.43147180560990850618E-1, 1.00000000000000000299E0 }; static float Q[] = { 3.27954898576485872656E-5, 1.00962792679356715133E-3, 6.50609489976927491433E-3, 1.68862163993311317300E-2, 2.61769742454493659583E-2, 3.34833904888224918614E-2, 4.27180926518931511717E-2, 5.85936634471101055642E-2, 9.37499997197644278445E-2, 2.49999999999888314361E-1 }; #ifdef ANSIC float polevlf(float, float *, int), logf(float); float ellpef( float xx) #else float polevlf(), logf(); float ellpef(xx) double xx; #endif { float x; x = xx; if( (x <= 0.0) || (x > 1.0) ) { if( x == 0.0 ) return( 1.0 ); mtherrf( "ellpef", DOMAIN ); return( 0.0 ); } return( polevlf(x,P,10) - logf(x) * (x * polevlf(x,Q,9)) ); }