/* fdtrf.c * * F distribution * * * * SYNOPSIS: * * int df1, df2; * float x, y, fdtrf(); * * y = fdtrf( df1, df2, x ); * * * * DESCRIPTION: * * Returns the area from zero to x under the F density * function (also known as Snedcor's density or the * variance ratio density). This is the density * of x = (u1/df1)/(u2/df2), where u1 and u2 are random * variables having Chi square distributions with df1 * and df2 degrees of freedom, respectively. * * The incomplete beta integral is used, according to the * formula * * P(x) = incbet( df1/2, df2/2, (df1*x/(df2 + df1*x) ). * * * The arguments a and b are greater than zero, and x * x is nonnegative. * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0,100 5000 2.2e-5 1.1e-6 * * ERROR MESSAGES: * * message condition value returned * fdtrf domain a<0, b<0, x<0 0.0 * */ /* fdtrcf() * * Complemented F distribution * * * * SYNOPSIS: * * int df1, df2; * float x, y, fdtrcf(); * * y = fdtrcf( df1, df2, x ); * * * * DESCRIPTION: * * Returns the area from x to infinity under the F density * function (also known as Snedcor's density or the * variance ratio density). * * * inf. * - * 1 | | a-1 b-1 * 1-P(x) = ------ | t (1-t) dt * B(a,b) | | * - * x * * (See fdtr.c.) * * The incomplete beta integral is used, according to the * formula * * P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ). * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0,100 5000 7.3e-5 1.2e-5 * * ERROR MESSAGES: * * message condition value returned * fdtrcf domain a<0, b<0, x<0 0.0 * */ /* fdtrif() * * Inverse of complemented F distribution * * * * SYNOPSIS: * * float df1, df2, x, y, fdtrif(); * * x = fdtrif( df1, df2, y ); * * * * * DESCRIPTION: * * Finds the F density argument x such that the integral * from x to infinity of the F density is equal to the * given probability y. * * This is accomplished using the inverse beta integral * function and the relations * * z = incbi( df2/2, df1/2, y ) * x = df2 (1-z) / (df1 z). * * Note: the following relations hold for the inverse of * the uncomplemented F distribution: * * z = incbi( df1/2, df2/2, y ) * x = df2 z / (df1 (1-z)). * * * * ACCURACY: * * arithmetic domain # trials peak rms * Absolute error: * IEEE 0,100 5000 4.0e-5 3.2e-6 * Relative error: * IEEE 0,100 5000 1.2e-3 1.8e-5 * * ERROR MESSAGES: * * message condition value returned * fdtrif domain y <= 0 or y > 1 0.0 * v < 1 * */ /* Cephes Math Library Release 2.2: July, 1992 Copyright 1984, 1987, 1992 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include "mconf.h" #ifdef ANSIC float incbetf(float, float, float); float incbif(float, float, float); #else float incbetf(), incbif(); #endif #ifdef ANSIC float fdtrcf( int ia, int ib, float xx ) #else float fdtrcf( ia, ib, xx ) int ia, ib; double xx; #endif { float x, a, b, w; x = xx; if( (ia < 1) || (ib < 1) || (x < 0.0) ) { mtherrf( "fdtrcf", DOMAIN ); return( 0.0 ); } a = ia; b = ib; w = b / (b + a * x); return( incbetf( 0.5*b, 0.5*a, w ) ); } #ifdef ANSIC float fdtrf( int ia, int ib, int xx ) #else float fdtrf( ia, ib, xx ) int ia, ib; double xx; #endif { float x, a, b, w; x = xx; if( (ia < 1) || (ib < 1) || (x < 0.0) ) { mtherrf( "fdtrf", DOMAIN ); return( 0.0 ); } a = ia; b = ib; w = a * x; w = w / (b + w); return( incbetf( 0.5*a, 0.5*b, w) ); } #ifdef ANSIC float fdtrif( int ia, int ib, float yy ) #else float fdtrif( ia, ib, yy ) int ia, ib; double yy; #endif { float y, a, b, w, x; y = yy; if( (ia < 1) || (ib < 1) || (y <= 0.0) || (y > 1.0) ) { mtherrf( "fdtrif", DOMAIN ); return( 0.0 ); } a = ia; b = ib; w = incbif( 0.5*b, 0.5*a, y ); x = (b - b*w)/(a*w); return(x); }