/* hyp2f1f.c * * Gauss hypergeometric function F * 2 1 * * * SYNOPSIS: * * float a, b, c, x, y, hyp2f1f(); * * y = hyp2f1f( a, b, c, x ); * * * DESCRIPTION: * * * hyp2f1( a, b, c, x ) = F ( a, b; c; x ) * 2 1 * * inf. * - a(a+1)...(a+k) b(b+1)...(b+k) k+1 * = 1 + > ----------------------------- x . * - c(c+1)...(c+k) (k+1)! * k = 0 * * Cases addressed are * Tests and escapes for negative integer a, b, or c * Linear transformation if c - a or c - b negative integer * Special case c = a or c = b * Linear transformation for x near +1 * Transformation for x < -0.5 * Psi function expansion if x > 0.5 and c - a - b integer * Conditionally, a recurrence on c to make c-a-b > 0 * * |x| > 1 is rejected. * * The parameters a, b, c are considered to be integer * valued if they are within 1.0e-6 of the nearest integer. * * ACCURACY: * * Relative error (-1 < x < 1): * arithmetic domain # trials peak rms * IEEE 0,3 30000 5.8e-4 4.3e-6 */ /* hyp2f1 */ /* Cephes Math Library Release 2.2: November, 1992 Copyright 1984, 1987, 1992 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include "mconf.h" #define EPS 1.0e-5 #define EPS2 1.0e-5 #define ETHRESH 1.0e-5 extern float MAXNUMF, MACHEPF; #define fabsf(x) ( (x) < 0 ? -(x) : (x) ) #ifdef ANSIC float powf(float, float); static float hys2f1f(float, float, float, float, float *); static float hyt2f1f(float, float, float, float, float *); float gammaf(float), logf(float), expf(float), psif(float); float floorf(float); #else float powf(), gammaf(), logf(), expf(), psif(); float floorf(); static float hyt2f1f(), hys2f1f(); #endif #define roundf(x) (floorf((x)+(float )0.5)) #ifdef ANSIC float hyp2f1f( float aa, float bb, float cc, float xx ) #else float hyp2f1f( aa, bb, cc, xx ) double aa, bb, cc, xx; #endif { float a, b, c, x; float d, d1, d2, e; float p, q, r, s, y, ax; float ia, ib, ic, id, err; int flag, i, aid; a = aa; b = bb; c = cc; x = xx; err = 0.0; ax = fabsf(x); s = 1.0 - x; flag = 0; ia = roundf(a); /* nearest integer to a */ ib = roundf(b); if( a <= 0 ) { if( fabsf(a-ia) < EPS ) /* a is a negative integer */ flag |= 1; } if( b <= 0 ) { if( fabsf(b-ib) < EPS ) /* b is a negative integer */ flag |= 2; } if( ax < 1.0 ) { if( fabsf(b-c) < EPS ) /* b = c */ { y = powf( s, -a ); /* s to the -a power */ goto hypdon; } if( fabsf(a-c) < EPS ) /* a = c */ { y = powf( s, -b ); /* s to the -b power */ goto hypdon; } } if( c <= 0.0 ) { ic = roundf(c); /* nearest integer to c */ if( fabsf(c-ic) < EPS ) /* c is a negative integer */ { /* check if termination before explosion */ if( (flag & 1) && (ia > ic) ) goto hypok; if( (flag & 2) && (ib > ic) ) goto hypok; goto hypdiv; } } if( flag ) /* function is a polynomial */ goto hypok; if( ax > 1.0 ) /* series diverges */ goto hypdiv; p = c - a; ia = roundf(p); if( (ia <= 0.0) && (fabsf(p-ia) < EPS) ) /* negative int c - a */ flag |= 4; r = c - b; ib = roundf(r); /* nearest integer to r */ if( (ib <= 0.0) && (fabsf(r-ib) < EPS) ) /* negative int c - b */ flag |= 8; d = c - a - b; id = roundf(d); /* nearest integer to d */ q = fabsf(d-id); if( fabsf(ax-1.0) < EPS ) /* |x| == 1.0 */ { if( x > 0.0 ) { if( flag & 12 ) /* negative int c-a or c-b */ { if( d >= 0.0 ) goto hypf; else goto hypdiv; } if( d <= 0.0 ) goto hypdiv; y = gammaf(c)*gammaf(d)/(gammaf(p)*gammaf(r)); goto hypdon; } if( d <= -1.0 ) goto hypdiv; } /* Conditionally make d > 0 by recurrence on c * AMS55 #15.2.27 */ if( d < 0.0 ) { /* Try the power series first */ y = hyt2f1f( a, b, c, x, &err ); if( err < ETHRESH ) goto hypdon; /* Apply the recurrence if power series fails */ err = 0.0; aid = 2 - id; e = c + aid; d2 = hyp2f1f(a,b,e,x); d1 = hyp2f1f(a,b,e+1.0,x); q = a + b + 1.0; for( i=0; i ETHRESH ) { mtherrf( "hyp2f1", PLOSS ); /* printf( "Estimated err = %.2e\n", err );*/ } return(y); /* The transformation for c-a or c-b negative integer * AMS55 #15.3.3 */ hypf: y = powf( s, d ) * hys2f1f( c-a, c-b, c, x, &err ); goto hypdon; /* The alarm exit */ hypdiv: mtherrf( "hyp2f1f", OVERFLOW ); return( MAXNUMF ); } /* Apply transformations for |x| near 1 * then call the power series */ #ifdef ANSIC static float hyt2f1f( float aa, float bb, float cc, float xx, float *loss ) #else static float hyt2f1f( aa, bb, cc, xx, loss ) double aa, bb, cc, xx; float *loss; #endif { float a, b, c, x; float p, q, r, s, t, y, d, err, err1; float ax, id, d1, d2, e, y1; int i, aid; a = aa; b = bb; c = cc; x = xx; err = 0.0; s = 1.0 - x; if( x < -0.5 ) { if( b > a ) y = powf( s, -a ) * hys2f1f( a, c-b, c, -x/s, &err ); else y = powf( s, -b ) * hys2f1f( c-a, b, c, -x/s, &err ); goto done; } d = c - a - b; id = roundf(d); /* nearest integer to d */ if( x > 0.8 ) { if( fabsf(d-id) > EPS2 ) /* test for integer c-a-b */ { /* Try the power series first */ y = hys2f1f( a, b, c, x, &err ); if( err < ETHRESH ) goto done; /* If power series fails, then apply AMS55 #15.3.6 */ q = hys2f1f( a, b, 1.0-d, s, &err ); q *= gammaf(d) /(gammaf(c-a) * gammaf(c-b)); r = powf(s,d) * hys2f1f( c-a, c-b, d+1.0, s, &err1 ); r *= gammaf(-d)/(gammaf(a) * gammaf(b)); y = q + r; q = fabsf(q); /* estimate cancellation error */ r = fabsf(r); if( q > r ) r = q; err += err1 + (MACHEPF*r)/y; y *= gammaf(c); goto done; } else { /* Psi function expansion, AMS55 #15.3.10, #15.3.11, #15.3.12 */ if( id >= 0.0 ) { e = d; d1 = d; d2 = 0.0; aid = id; } else { e = -d; d1 = 0.0; d2 = d; aid = -id; } ax = logf(s); /* sum for t = 0 */ y = psif(1.0) + psif(1.0+e) - psif(a+d1) - psif(b+d1) - ax; y /= gammaf(e+1.0); p = (a+d1) * (b+d1) * s / gammaf(e+2.0); /* Poch for t=1 */ t = 1.0; do { r = psif(1.0+t) + psif(1.0+t+e) - psif(a+t+d1) - psif(b+t+d1) - ax; q = p * r; y += q; p *= s * (a+t+d1) / (t+1.0); p *= (b+t+d1) / (t+1.0+e); t += 1.0; } while( fabsf(q/y) > EPS ); if( id == 0.0 ) { y *= gammaf(c)/(gammaf(a)*gammaf(b)); goto psidon; } y1 = 1.0; if( aid == 1 ) goto nosum; t = 0.0; p = 1.0; for( i=1; i 0.0 ) y *= q; else y1 *= q; y += y1; psidon: goto done; } } /* Use defining power series if no special cases */ y = hys2f1f( a, b, c, x, &err ); done: *loss = err; return(y); } /* Defining power series expansion of Gauss hypergeometric function */ #if 1 #ifdef ANSIC static float hys2f1f( float aa, float bb, float cc, float xx, float *loss ) #else static float hys2f1f( aa, bb, cc, xx, loss ) double aa, bb, cc, xx; float *loss; #endif { int i; float a, b, c, x; float f, g, h, k, m, s, u, umax; a = aa; b = bb; c = cc; x = xx; i = 0; umax = 0.0; f = a; g = b; h = c; k = 0.0; s = 1.0; u = 1.0; do { if( fabsf(h) < EPS ) return( MAXNUMF ); m = k + 1.0; u = u * ((f+k) * (g+k) * x / ((h+k) * m)); s += u; k = fabsf(u); /* remember largest term summed */ if( k > umax ) umax = k; k = m; if( ++i > 10000 ) /* should never happen */ { *loss = 1.0; return(s); } } while( fabsf(u/s) > MACHEPF ); /* return estimated relative error */ *loss = (MACHEPF*umax)/fabsf(s) + (MACHEPF*i); return(s); } #else /* 0 */ extern double MACHEP; #ifdef ANSIC static float hys2f1f( float aa, float bb, float cc, float xx, float *loss ) #else static float hys2f1f( aa, bb, cc, xx, loss ) double aa, bb, cc, xx; float *loss; #endif { int i; double a, b, c, x; double f, g, h, k, m, s, u, umax; a = aa; b = bb; c = cc; x = xx; i = 0; umax = 0.0; f = a; g = b; h = c; k = 0.0; s = 1.0; u = 1.0; do { if( fabsf(h) < EPS ) { *loss = 1.0; return( MAXNUMF ); } m = k + 1.0; u = u * ((f+k) * (g+k) * x / ((h+k) * m)); s += u; k = fabsf(u); /* remember largest term summed */ if( k > umax ) umax = k; k = m; if( ++i > 10000 ) /* should never happen */ { *loss = 1.0; return(s); } } while( fabsf(u/s) > MACHEP ); /* return estimated relative error */ *loss = (MACHEPF*umax)/fabsf(s) + (MACHEPF*i); return(s); } #endif