/* i1f.c * * Modified Bessel function of order one * * * * SYNOPSIS: * * float x, y, i1f(); * * y = i1f( x ); * * * * DESCRIPTION: * * Returns modified Bessel function of order one of the * argument. * * The function is defined as i1(x) = -i j1( ix ). * * The range is partitioned into the two intervals [0,8] and * (8, infinity). Chebyshev polynomial expansions are employed * in each interval. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0, 30 100000 1.5e-6 1.6e-7 * * */ /* i1ef.c * * Modified Bessel function of order one, * exponentially scaled * * * * SYNOPSIS: * * float x, y, i1ef(); * * y = i1ef( x ); * * * * DESCRIPTION: * * Returns exponentially scaled modified Bessel function * of order one of the argument. * * The function is defined as i1(x) = -i exp(-|x|) j1( ix ). * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0, 30 30000 1.5e-6 1.5e-7 * See i1(). * */ /* i1.c 2 */ /* Cephes Math Library Release 2.0: March, 1987 Copyright 1985, 1987 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include "mconf.h" /* Chebyshev coefficients for exp(-x) I1(x) / x * in the interval [0,8]. * * lim(x->0){ exp(-x) I1(x) / x } = 1/2. */ static float A[] = { 9.38153738649577178388E-9f, -4.44505912879632808065E-8f, 2.00329475355213526229E-7f, -8.56872026469545474066E-7f, 3.47025130813767847674E-6f, -1.32731636560394358279E-5f, 4.78156510755005422638E-5f, -1.61760815825896745588E-4f, 5.12285956168575772895E-4f, -1.51357245063125314899E-3f, 4.15642294431288815669E-3f, -1.05640848946261981558E-2f, 2.47264490306265168283E-2f, -5.29459812080949914269E-2f, 1.02643658689847095384E-1f, -1.76416518357834055153E-1f, 2.52587186443633654823E-1f }; /* Chebyshev coefficients for exp(-x) sqrt(x) I1(x) * in the inverted interval [8,infinity]. * * lim(x->inf){ exp(-x) sqrt(x) I1(x) } = 1/sqrt(2pi). */ static float B[] = { -3.83538038596423702205E-9f, -2.63146884688951950684E-8f, -2.51223623787020892529E-7f, -3.88256480887769039346E-6f, -1.10588938762623716291E-4f, -9.76109749136146840777E-3f, 7.78576235018280120474E-1f }; /* i1.c */ #define fabsf(x) ( (x) < 0 ? -(x) : (x) ) #ifdef ANSIC float chbevlf(float, float *, int); float expf(float), sqrtf(float); #else float chbevlf(), expf(), sqrtf(); #endif #ifdef ANSIC float i1f(float xx) #else float i1f(xx) double xx; #endif { float x, y, z; x = xx; z = fabsf(x); if( z <= 8.0f ) { y = 0.5f*z - 2.0f; z = chbevlf( y, A, 17 ) * z * expf(z); } else { z = expf(z) * chbevlf( 32.0f/z - 2.0f, B, 7 ) / sqrtf(z); } if( x < 0.0f ) z = -z; return( z ); } /* i1e() */ #ifdef ANSIC float i1ef( float xx ) #else float i1ef( xx ) double xx; #endif { float x, y, z; x = xx; z = fabsf(x); if( z <= 8.0f ) { y = 0.5f*z - 2.0f; z = chbevlf( y, A, 17 ) * z; } else { z = chbevlf( 32.0f/z - 2.0f, B, 7 ) / sqrtf(z); } if( x < 0.0f ) z = -z; return( z ); }