/* ivf.c * * Modified Bessel function of noninteger order * * * * SYNOPSIS: * * float v, x, y, ivf(); * * y = ivf( v, x ); * * * * DESCRIPTION: * * Returns modified Bessel function of order v of the * argument. If x is negative, v must be integer valued. * * The function is defined as Iv(x) = Jv( ix ). It is * here computed in terms of the confluent hypergeometric * function, according to the formula * * v -x * Iv(x) = (x/2) e hyperg( v+0.5, 2v+1, 2x ) / gamma(v+1) * * If v is a negative integer, then v is replaced by -v. * * * ACCURACY: * * Tested at random points (v, x), with v between 0 and * 30, x between 0 and 28. * arithmetic domain # trials peak rms * Relative error: * IEEE 0,15 3000 4.7e-6 5.4e-7 * Absolute error (relative when function > 1) * IEEE 0,30 5000 8.5e-6 1.3e-6 * * Accuracy is diminished if v is near a negative integer. * The useful domain for relative error is limited by overflow * of the single precision exponential function. * * See also hyperg.c. * */ /* iv.c */ /* Modified Bessel function of noninteger order */ /* If x < 0, then v must be an integer. */ /* Cephes Math Library Release 2.2: June, 1992 Copyright 1984, 1987, 1988, 1992 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include "mconf.h" extern double MAXNUMF; #define fabsf(x) ( (x) < 0 ? -(x) : (x) ) #ifdef ANSIC float hypergf(float, float, float); float expf(float), gammaf(float), logf(float), floorf(float); float ivf( float v, float x ) #else float hypergf(), expf(), gammaf(), logf(), floorf(); float ivf( v, x ) double v, x; #endif { int sign; float t, ax; /* If v is a negative integer, invoke symmetry */ t = floorf(v); if( v < 0.0 ) { if( t == v ) { v = -v; /* symmetry */ t = -t; } } /* If x is negative, require v to be an integer */ sign = 1; if( x < 0.0 ) { if( t != v ) { mtherrf( "ivf", DOMAIN ); return( 0.0 ); } if( v != 2.0 * floorf(v/2.0) ) sign = -1; } /* Avoid logarithm singularity */ if( x == 0.0 ) { if( v == 0.0 ) return( 1.0 ); if( v < 0.0 ) { mtherrf( "ivf", OVERFLOW ); return( MAXNUMF ); } else return( 0.0 ); } ax = fabsf(x); t = v * logf( 0.5 * ax ) - x; t = sign * expf(t) / gammaf( v + 1.0 ); ax = v + 0.5; return( t * hypergf( ax, 2.0 * ax, 2.0 * x ) ); }