/* jvf.c * * Bessel function of noninteger order * * * * SYNOPSIS: * * float v, x, y, jvf(); * * y = jvf( v, x ); * * * * DESCRIPTION: * * Returns Bessel function of order v of the argument, * where v is real. Negative x is allowed if v is an integer. * * Several expansions are included: the ascending power * series, the Hankel expansion, and two transitional * expansions for large v. If v is not too large, it * is reduced by recurrence to a region of best accuracy. * * The single precision routine accepts negative v, but with * reduced accuracy. * * * * ACCURACY: * Results for integer v are indicated by *. * Error criterion is absolute, except relative when |jv()| > 1. * * arithmetic domain # trials peak rms * v x * IEEE 0,125 0,125 30000 2.0e-6 2.0e-7 * IEEE -17,0 0,125 30000 1.1e-5 4.0e-7 * IEEE -100,0 0,125 3000 1.5e-4 7.8e-6 */ /* Cephes Math Library Release 2.2: June, 1992 Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include "mconf.h" #define DEBUG 0 extern float MAXNUMF, MACHEPF, MINLOGF, MAXLOGF, PIF; extern int sgngamf; /* BIG = 1/MACHEPF */ #define BIG 16777216. #ifdef ANSIC float floorf(float), j0f(float), j1f(float); static float jnxf(float, float); static float jvsf(float, float); static float hankelf(float, float); static float jntf(float, float); static float recurf( float *, float, float * ); float sqrtf(float), sinf(float), cosf(float); float lgamf(float), expf(float), logf(float), powf(float, float); float gammaf(float), cbrtf(float), acosf(float); int airyf(float, float *, float *, float *, float *); float polevlf(float, float *, int); #else float floorf(), j0f(), j1f(); float sqrtf(), sinf(), cosf(); float lgamf(), expf(), logf(), powf(), gammaf(); float cbrtf(), polevlf(), acosf(); void airyf(); static float recurf(), jvsf(), hankelf(), jnxf(), jntf(), jvsf(); #endif #define fabsf(x) ( (x) < 0 ? -(x) : (x) ) #ifdef ANSIC float jvf( float nn, float xx ) #else float jvf( nn, xx ) double nn, xx; #endif { float n, x, k, q, t, y, an, sign; int i, nint; n = nn; x = xx; nint = 0; /* Flag for integer n */ sign = 1.0; /* Flag for sign inversion */ an = fabsf( n ); y = floorf( an ); if( y == an ) { nint = 1; i = an - 16384.0 * floorf( an/16384.0 ); if( n < 0.0 ) { if( i & 1 ) sign = -sign; n = an; } if( x < 0.0 ) { if( i & 1 ) sign = -sign; x = -x; } if( n == 0.0 ) return( j0f(x) ); if( n == 1.0 ) return( sign * j1f(x) ); } if( (x < 0.0) && (y != an) ) { mtherrf( "jvf", DOMAIN ); y = 0.0; goto done; } y = fabsf(x); if( y < MACHEPF ) goto underf; /* Easy cases - x small compared to n */ t = 3.6 * sqrtf(an); if( y < t ) return( sign * jvsf(n,x) ); /* x large compared to n */ k = 3.6 * sqrtf(y); if( (an < k) && (y > 6.0) ) return( sign * hankelf(n,x) ); if( (n > -100) && (n < 14.0) ) { /* Note: if x is too large, the continued * fraction will fail; but then the * Hankel expansion can be used. */ if( nint != 0 ) { k = 0.0; q = recurf( &n, x, &k ); if( k == 0.0 ) { y = j0f(x)/q; goto done; } if( k == 1.0 ) { y = j1f(x)/q; goto done; } } if( n >= 0.0 ) { /* Recur backwards from a larger value of n */ if( y > 1.3 * an ) goto recurdwn; if( an > 1.3 * y ) goto recurdwn; k = n; y = 2.0*(y+an+1.0); if( (y - n) > 33.0 ) y = n + 33.0; y = n + floorf(y-n); q = recurf( &y, x, &k ); y = jvsf(y,x) * q; goto done; } recurdwn: if( an > (k + 3.0) ) { /* Recur backwards from n to k */ if( n < 0.0 ) k = -k; q = n - floorf(n); k = floorf(k) + q; if( n > 0.0 ) q = recurf( &n, x, &k ); else { t = k; k = n; q = recurf( &t, x, &k ); k = t; } if( q == 0.0 ) { underf: y = 0.0; goto done; } } else { k = n; q = 1.0; } /* boundary between convergence of * power series and Hankel expansion */ t = fabsf(k); if( t < 26.0 ) t = (0.0083*t + 0.09)*t + 12.9; else t = 0.9 * t; if( y > t ) /* y = |x| */ y = hankelf(k,x); else y = jvsf(k,x); #if DEBUG printf( "y = %.16e, q = %.16e\n", y, q ); #endif if( n > 0.0 ) y /= q; else y *= q; } else { /* For large positive n, use the uniform expansion * or the transitional expansion. * But if x is of the order of n**2, * these may blow up, whereas the * Hankel expansion will then work. */ if( n < 0.0 ) { mtherrf( "jvf", TLOSS ); y = 0.0; goto done; } t = y/an; t /= an; if( t > 0.3 ) y = hankelf(n,x); else y = jnxf(n,x); } done: return( sign * y); } /* Reduce the order by backward recurrence. * AMS55 #9.1.27 and 9.1.73. */ #ifdef ANSIC static float recurf( float *n, float xx, float *newn ) #else static float recurf( n, xx, newn ) float *n; double xx; float *newn; #endif { float x, pkm2, pkm1, pk, pkp1, qkm2, qkm1; float k, ans, qk, xk, yk, r, t, kf, xinv; static float big = BIG; int nflag, ctr; x = xx; /* continued fraction for Jn(x)/Jn-1(x) */ if( *n < 0.0 ) nflag = 1; else nflag = 0; fstart: #if DEBUG printf( "n = %.6e, newn = %.6e, cfrac = ", *n, *newn ); #endif pkm2 = 0.0; qkm2 = 1.0; pkm1 = x; qkm1 = *n + *n; xk = -x * x; yk = qkm1; ans = 1.0; ctr = 0; do { yk += 2.0; pk = pkm1 * yk + pkm2 * xk; qk = qkm1 * yk + qkm2 * xk; pkm2 = pkm1; pkm1 = pk; qkm2 = qkm1; qkm1 = qk; if( qk != 0 ) r = pk/qk; else r = 0.0; if( r != 0 ) { t = fabsf( (ans - r)/r ); ans = r; } else t = 1.0; if( t < MACHEPF ) goto done; if( fabsf(pk) > big ) { pkm2 *= MACHEPF; pkm1 *= MACHEPF; qkm2 *= MACHEPF; qkm1 *= MACHEPF; } } while( t > MACHEPF ); done: #if DEBUG printf( "%.6e\n", ans ); #endif /* Change n to n-1 if n < 0 and the continued fraction is small */ if( nflag > 0 ) { if( fabsf(ans) < 0.125 ) { nflag = -1; *n = *n - 1.0; goto fstart; } } kf = *newn; /* backward recurrence * 2k * J (x) = --- J (x) - J (x) * k-1 x k k+1 */ pk = 1.0; pkm1 = 1.0/ans; k = *n - 1.0; r = 2 * k; xinv = 1.0/x; do { pkm2 = (pkm1 * r - pk * x) * xinv; pkp1 = pk; pk = pkm1; pkm1 = pkm2; r -= 2.0; #if 0 t = fabsf(pkp1) + fabsf(pk); if( (k > (kf + 2.5)) && (fabsf(pkm1) < 0.25*t) ) { k -= 1.0; t = x*x; pkm2 = ( (r*(r+2.0)-t)*pk - r*x*pkp1 )/t; pkp1 = pk; pk = pkm1; pkm1 = pkm2; r -= 2.0; } #endif k -= 1.0; } while( k > (kf + 0.5) ); #if 0 /* Take the larger of the last two iterates * on the theory that it may have less cancellation error. */ if( (kf >= 0.0) && (fabsf(pk) > fabsf(pkm1)) ) { k += 1.0; pkm2 = pk; } #endif *newn = k; #if DEBUG printf( "newn %.6e\n", k ); #endif return( pkm2 ); } /* Ascending power series for Jv(x). * AMS55 #9.1.10. */ #ifdef ANSIC static float jvsf( float nn, float xx ) #else static float jvsf( nn, xx ) double nn, xx; #endif { float n, x, t, u, y, z, k, ay; #if DEBUG printf( "jvsf: " ); #endif n = nn; x = xx; z = -0.25 * x * x; u = 1.0; y = u; k = 1.0; t = 1.0; while( t > MACHEPF ) { u *= z / (k * (n+k)); y += u; k += 1.0; t = fabsf(u); if( (ay = fabsf(y)) > 1.0 ) t /= ay; } if( x < 0.0 ) { y = y * powf( 0.5 * x, n ) / gammaf( n + 1.0 ); } else { t = n * logf(0.5*x) - lgamf(n + 1.0); if( t < -MAXLOGF ) { return( 0.0 ); } if( t > MAXLOGF ) { t = logf(y) + t; if( t > MAXLOGF ) { mtherrf( "jvf", OVERFLOW ); return( MAXNUMF ); } else { y = sgngamf * expf(t); return(y); } } y = sgngamf * y * expf( t ); } #if DEBUG printf( "y = %.8e\n", y ); #endif return(y); } /* Hankel's asymptotic expansion * for large x. * AMS55 #9.2.5. */ #ifdef ANSIC static float hankelf( float nn, float xx ) #else static float hankelf( nn, xx ) double nn, xx; #endif { float n, x, t, u, z, k, sign, conv; float p, q, j, m, pp, qq; int flag; #if DEBUG printf( "hankelf: " ); #endif n = nn; x = xx; m = 4.0*n*n; j = 1.0; z = 8.0 * x; k = 1.0; p = 1.0; u = (m - 1.0)/z; q = u; sign = 1.0; conv = 1.0; flag = 0; t = 1.0; pp = 1.0e38; qq = 1.0e38; while( t > MACHEPF ) { k += 2.0; j += 1.0; sign = -sign; u *= (m - k * k)/(j * z); p += sign * u; k += 2.0; j += 1.0; u *= (m - k * k)/(j * z); q += sign * u; t = fabsf(u/p); if( t < conv ) { conv = t; qq = q; pp = p; flag = 1; } /* stop if the terms start getting larger */ if( (flag != 0) && (t > conv) ) { #if DEBUG printf( "Hankel: convergence to %.4E\n", conv ); #endif goto hank1; } } hank1: u = x - (0.5*n + 0.25) * PIF; t = sqrtf( 2.0/(PIF*x) ) * ( pp * cosf(u) - qq * sinf(u) ); return( t ); } /* Asymptotic expansion for large n. * AMS55 #9.3.35. */ static float lambda[] = { 1.0, 1.041666666666666666666667E-1, 8.355034722222222222222222E-2, 1.282265745563271604938272E-1, 2.918490264641404642489712E-1, 8.816272674437576524187671E-1, 3.321408281862767544702647E+0, 1.499576298686255465867237E+1, 7.892301301158651813848139E+1, 4.744515388682643231611949E+2, 3.207490090890661934704328E+3 }; static float mu[] = { 1.0, -1.458333333333333333333333E-1, -9.874131944444444444444444E-2, -1.433120539158950617283951E-1, -3.172272026784135480967078E-1, -9.424291479571202491373028E-1, -3.511203040826354261542798E+0, -1.572726362036804512982712E+1, -8.228143909718594444224656E+1, -4.923553705236705240352022E+2, -3.316218568547972508762102E+3 }; static float P1[] = { -2.083333333333333333333333E-1, 1.250000000000000000000000E-1 }; static float P2[] = { 3.342013888888888888888889E-1, -4.010416666666666666666667E-1, 7.031250000000000000000000E-2 }; static float P3[] = { -1.025812596450617283950617E+0, 1.846462673611111111111111E+0, -8.912109375000000000000000E-1, 7.324218750000000000000000E-2 }; static float P4[] = { 4.669584423426247427983539E+0, -1.120700261622299382716049E+1, 8.789123535156250000000000E+0, -2.364086914062500000000000E+0, 1.121520996093750000000000E-1 }; static float P5[] = { -2.8212072558200244877E1, 8.4636217674600734632E1, -9.1818241543240017361E1, 4.2534998745388454861E1, -7.3687943594796316964E0, 2.27108001708984375E-1 }; static float P6[] = { 2.1257013003921712286E2, -7.6525246814118164230E2, 1.0599904525279998779E3, -6.9957962737613254123E2, 2.1819051174421159048E2, -2.6491430486951555525E1, 5.7250142097473144531E-1 }; static float P7[] = { -1.9194576623184069963E3, 8.0617221817373093845E3, -1.3586550006434137439E4, 1.1655393336864533248E4, -5.3056469786134031084E3, 1.2009029132163524628E3, -1.0809091978839465550E2, 1.7277275025844573975E0 }; #ifdef ANSIC static float jnxf( float nn, float xx ) #else static float jnxf( nn, xx ) double nn, xx; #endif { float n, x, zeta, sqz, zz, zp, np; float cbn, n23, t, z, sz; float pp, qq, z32i, zzi; float ak, bk, akl, bkl; int sign, doa, dob, nflg, k, s, tk, tkp1, m; static float u[8]; static float ai, aip, bi, bip; n = nn; x = xx; /* Test for x very close to n. * Use expansion for transition region if so. */ cbn = cbrtf(n); z = (x - n)/cbn; if( (fabsf(z) <= 0.7) || (n < 0.0) ) return( jntf(n,x) ); z = x/n; zz = 1.0 - z*z; if( zz == 0.0 ) return(0.0); if( zz > 0.0 ) { sz = sqrtf( zz ); t = 1.5 * (logf( (1.0+sz)/z ) - sz ); /* zeta ** 3/2 */ zeta = cbrtf( t * t ); nflg = 1; } else { sz = sqrtf(-zz); t = 1.5 * (sz - acosf(1.0/z)); zeta = -cbrtf( t * t ); nflg = -1; } z32i = fabsf(1.0/t); sqz = cbrtf(t); /* Airy function */ n23 = cbrtf( n * n ); t = n23 * zeta; #if DEBUG printf("zeta %.5E, Airyf(%.5E)\n", zeta, t ); #endif airyf( t, &ai, &aip, &bi, &bip ); /* polynomials in expansion */ u[0] = 1.0; zzi = 1.0/zz; u[1] = polevlf( zzi, P1, 1 )/sz; u[2] = polevlf( zzi, P2, 2 )/zz; u[3] = polevlf( zzi, P3, 3 )/(sz*zz); pp = zz*zz; u[4] = polevlf( zzi, P4, 4 )/pp; u[5] = polevlf( zzi, P5, 5 )/(pp*sz); pp *= zz; u[6] = polevlf( zzi, P6, 6 )/pp; u[7] = polevlf( zzi, P7, 7 )/(pp*sz); #if DEBUG for( k=0; k<=7; k++ ) printf( "u[%d] = %.5E\n", k, u[k] ); #endif pp = 0.0; qq = 0.0; np = 1.0; /* flags to stop when terms get larger */ doa = 1; dob = 1; akl = MAXNUMF; bkl = MAXNUMF; for( k=0; k<=3; k++ ) { tk = 2 * k; tkp1 = tk + 1; zp = 1.0; ak = 0.0; bk = 0.0; for( s=0; s<=tk; s++ ) { if( doa ) { if( (s & 3) > 1 ) sign = nflg; else sign = 1; ak += sign * mu[s] * zp * u[tk-s]; } if( dob ) { m = tkp1 - s; if( ((m+1) & 3) > 1 ) sign = nflg; else sign = 1; bk += sign * lambda[s] * zp * u[m]; } zp *= z32i; } if( doa ) { ak *= np; t = fabsf(ak); if( t < akl ) { akl = t; pp += ak; } else doa = 0; } if( dob ) { bk += lambda[tkp1] * zp * u[0]; bk *= -np/sqz; t = fabsf(bk); if( t < bkl ) { bkl = t; qq += bk; } else dob = 0; } #if DEBUG printf("a[%d] %.5E, b[%d] %.5E\n", k, ak, k, bk ); #endif if( np < MACHEPF ) break; np /= n*n; } /* normalizing factor ( 4*zeta/(1 - z**2) )**1/4 */ t = 4.0 * zeta/zz; t = sqrtf( sqrtf(t) ); t *= ai*pp/cbrtf(n) + aip*qq/(n23*n); return(t); } /* Asymptotic expansion for transition region, * n large and x close to n. * AMS55 #9.3.23. */ static float PF2[] = { -9.0000000000000000000e-2, 8.5714285714285714286e-2 }; static float PF3[] = { 1.3671428571428571429e-1, -5.4920634920634920635e-2, -4.4444444444444444444e-3 }; static float PF4[] = { 1.3500000000000000000e-3, -1.6036054421768707483e-1, 4.2590187590187590188e-2, 2.7330447330447330447e-3 }; static float PG1[] = { -2.4285714285714285714e-1, 1.4285714285714285714e-2 }; static float PG2[] = { -9.0000000000000000000e-3, 1.9396825396825396825e-1, -1.1746031746031746032e-2 }; static float PG3[] = { 1.9607142857142857143e-2, -1.5983694083694083694e-1, 6.3838383838383838384e-3 }; #ifdef ANSIC static float jntf( float nn, float xx ) #else static float jntf( nn, xx ) double nn, xx; #endif { float n, x, z, zz, z3; float cbn, n23, cbtwo; float ai, aip, bi, bip; /* Airy functions */ float nk, fk, gk, pp, qq; float F[5], G[4]; int k; n = nn; x = xx; cbn = cbrtf(n); z = (x - n)/cbn; cbtwo = cbrtf( 2.0 ); /* Airy function */ zz = -cbtwo * z; airyf( zz, &ai, &aip, &bi, &bip ); /* polynomials in expansion */ zz = z * z; z3 = zz * z; F[0] = 1.0; F[1] = -z/5.0; F[2] = polevlf( z3, PF2, 1 ) * zz; F[3] = polevlf( z3, PF3, 2 ); F[4] = polevlf( z3, PF4, 3 ) * z; G[0] = 0.3 * zz; G[1] = polevlf( z3, PG1, 1 ); G[2] = polevlf( z3, PG2, 2 ) * z; G[3] = polevlf( z3, PG3, 2 ) * zz; #if DEBUG for( k=0; k<=4; k++ ) printf( "F[%d] = %.5E\n", k, F[k] ); for( k=0; k<=3; k++ ) printf( "G[%d] = %.5E\n", k, G[k] ); #endif pp = 0.0; qq = 0.0; nk = 1.0; n23 = cbrtf( n * n ); for( k=0; k<=4; k++ ) { fk = F[k]*nk; pp += fk; if( k != 4 ) { gk = G[k]*nk; qq += gk; } #if DEBUG printf("fk[%d] %.5E, gk[%d] %.5E\n", k, fk, k, gk ); #endif nk /= n23; } fk = cbtwo * ai * pp/cbn + cbrtf(4.0) * aip * qq/n; return(fk); }