/* k1f.c * * Modified Bessel function, third kind, order one * * * * SYNOPSIS: * * float x, y, k1f(); * * y = k1f( x ); * * * * DESCRIPTION: * * Computes the modified Bessel function of the third kind * of order one of the argument. * * The range is partitioned into the two intervals [0,2] and * (2, infinity). Chebyshev polynomial expansions are employed * in each interval. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0, 30 30000 4.6e-7 7.6e-8 * * ERROR MESSAGES: * * message condition value returned * k1 domain x <= 0 MAXNUM * */ /* k1ef.c * * Modified Bessel function, third kind, order one, * exponentially scaled * * * * SYNOPSIS: * * float x, y, k1ef(); * * y = k1ef( x ); * * * * DESCRIPTION: * * Returns exponentially scaled modified Bessel function * of the third kind of order one of the argument: * * k1e(x) = exp(x) * k1(x). * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0, 30 30000 4.9e-7 6.7e-8 * See k1(). * */ /* Cephes Math Library Release 2.2: June, 1992 Copyright 1984, 1987, 1992 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include "mconf.h" /* Chebyshev coefficients for x(K1(x) - log(x/2) I1(x)) * in the interval [0,2]. * * lim(x->0){ x(K1(x) - log(x/2) I1(x)) } = 1. */ #define MINNUMF 6.0e-39 static float A[] = { -2.21338763073472585583E-8f, -2.43340614156596823496E-6f, -1.73028895751305206302E-4f, -6.97572385963986435018E-3f, -1.22611180822657148235E-1f, -3.53155960776544875667E-1f, 1.52530022733894777053E0f }; /* Chebyshev coefficients for exp(x) sqrt(x) K1(x) * in the interval [2,infinity]. * * lim(x->inf){ exp(x) sqrt(x) K1(x) } = sqrt(pi/2). */ static float B[] = { 2.01504975519703286596E-9f, -1.03457624656780970260E-8f, 5.74108412545004946722E-8f, -3.50196060308781257119E-7f, 2.40648494783721712015E-6f, -1.93619797416608296024E-5f, 1.95215518471351631108E-4f, -2.85781685962277938680E-3f, 1.03923736576817238437E-1f, 2.72062619048444266945E0f }; extern float MAXNUMF; #ifdef ANSIC float chbevlf(float, float *, int); float expf(float), i1f(float), logf(float), sqrtf(float); #else float chbevlf(), expf(), i1f(), logf(), sqrtf(); #endif #ifdef ANSIC float k1f(float xx) #else float k1f(xx) double xx; #endif { float x, y; x = xx; if( x <= MINNUMF ) { mtherrf( "k1f", DOMAIN ); return( MAXNUMF ); } if( x <= 2.0f ) { y = x * x - 2.0f; y = logf( 0.5f * x ) * i1f(x) + chbevlf( y, A, 7 ) / x; return( y ); } return( expf(-x) * chbevlf( 8.0f/x - 2.0f, B, 10 ) / sqrtf(x) ); } #ifdef ANSIC float k1ef( float xx ) #else float k1ef( xx ) double xx; #endif { float x, y; x = xx; if( x <= 0.0f ) { mtherrf( "k1ef", DOMAIN ); return( MAXNUMF ); } if( x <= 2.0f ) { y = x * x - 2.0f; y = logf( 0.5f * x ) * i1f(x) + chbevlf( y, A, 7 ) / x; return( y * expf(x) ); } return( chbevlf( 8.0f/x - 2.0f, B, 10 ) / sqrtf(x) ); }