/* log10f.c * * Common logarithm * * * * SYNOPSIS: * * float x, y, log10f(); * * y = log10f( x ); * * * * DESCRIPTION: * * Returns logarithm to the base 10 of x. * * The argument is separated into its exponent and fractional * parts. The logarithm of the fraction is approximated by * * log(1+x) = x - 0.5 x**2 + x**3 P(x). * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0.5, 2.0 100000 1.3e-7 3.4e-8 * IEEE 0, MAXNUMF 100000 1.3e-7 2.6e-8 * * In the tests over the interval [0, MAXNUM], the logarithms * of the random arguments were uniformly distributed over * [-MAXL10, MAXL10]. * * ERROR MESSAGES: * * log10f singularity: x = 0; returns -MAXL10 * log10f domain: x < 0; returns -MAXL10 * MAXL10 = 38.230809449325611792 */ /* Cephes Math Library Release 2.1: December, 1988 Copyright 1984, 1987, 1988 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include "mconf.h" static char fname[] = {"log10"}; /* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x) * 1/sqrt(2) <= x < sqrt(2) */ static float P[] = { 7.0376836292E-2, -1.1514610310E-1, 1.1676998740E-1, -1.2420140846E-1, 1.4249322787E-1, -1.6668057665E-1, 2.0000714765E-1, -2.4999993993E-1, 3.3333331174E-1 }; #define SQRTH 0.70710678118654752440 #define L102A 3.0078125E-1 #define L102B 2.48745663981195213739E-4 #define L10EA 4.3359375E-1 #define L10EB 7.00731903251827651129E-4 static float MAXL10 = 38.230809449325611792; #ifdef ANSIC float frexpf(float, int *), polevlf(float, float *, int); float log10f(float xx) #else float frexpf(), polevlf(); float log10f(xx) double xx; #endif { float x, y, z; int e; x = xx; /* Test for domain */ if( x <= 0.0 ) { if( x == 0.0 ) mtherrf( fname, SING ); else mtherrf( fname, DOMAIN ); return( -MAXL10 ); } /* separate mantissa from exponent */ x = frexpf( x, &e ); /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x) */ if( x < SQRTH ) { e -= 1; x = 2.0*x - 1.0; } else { x = x - 1.0; } /* rational form */ z = x*x; y = x * ( z * polevlf( x, P, 8 ) ); y = y - 0.5 * z; /* y - 0.5 * x**2 */ /* multiply log of fraction by log10(e) * and base 2 exponent by log10(2) */ z = (x + y) * L10EB; /* accumulate terms in order of size */ z += y * L10EA; z += x * L10EA; x = e; z += x * L102B; z += x * L102A; return( z ); }