/* powif.c * * Real raised to integer power * * * * SYNOPSIS: * * float x, y, powif(); * int n; * * y = powif( x, n ); * * * * DESCRIPTION: * * Returns argument x raised to the nth power. * The routine efficiently decomposes n as a sum of powers of * two. The desired power is a product of two-to-the-kth * powers of x. Thus to compute the 32767 power of x requires * 28 multiplications instead of 32767 multiplications. * * * * ACCURACY: * * * Relative error: * arithmetic x domain n domain # trials peak rms * IEEE .04,26 -26,26 100000 1.1e-6 2.0e-7 * IEEE 1,2 -128,128 100000 1.1e-5 1.0e-6 * * Returns MAXNUMF on overflow, zero on underflow. * */ /* powi.c */ /* Cephes Math Library Release 2.2: June, 1992 Copyright 1984, 1987, 1989 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include "mconf.h" extern float MAXNUMF, MAXLOGF, MINLOGF, LOGE2F; #ifdef ANSIC float frexpf( float, int * ); float powif( float x, int nn ) #else float frexpf(); float powif( x, nn ) double x; int nn; #endif { int n, e, sign, asign, lx; float w, y, s; if( x == 0.0 ) { if( nn == 0 ) return( 1.0 ); else if( nn < 0 ) return( MAXNUMF ); else return( 0.0 ); } if( nn == 0 ) return( 1.0 ); if( x < 0.0 ) { asign = -1; x = -x; } else asign = 0; if( nn < 0 ) { sign = -1; n = -nn; /* x = 1.0/x; */ } else { sign = 0; n = nn; } /* Overflow detection */ /* Calculate approximate logarithm of answer */ s = frexpf( x, &lx ); e = (lx - 1)*n; if( (e == 0) || (e > 64) || (e < -64) ) { s = (s - 7.0710678118654752e-1) / (s + 7.0710678118654752e-1); s = (2.9142135623730950 * s - 0.5 + lx) * nn * LOGE2F; } else { s = LOGE2F * e; } if( s > MAXLOGF ) { mtherrf( "powi", OVERFLOW ); y = MAXNUMF; goto done; } if( s < MINLOGF ) return(0.0); /* Handle tiny denormal answer, but with less accuracy * since roundoff error in 1.0/x will be amplified. * The precise demarcation should be the gradual underflow threshold. */ if( s < (-MAXLOGF+2.0) ) { x = 1.0/x; sign = 0; } /* First bit of the power */ if( n & 1 ) y = x; else { y = 1.0; asign = 0; } w = x; n >>= 1; while( n ) { w = w * w; /* arg to the 2-to-the-kth power */ if( n & 1 ) /* if that bit is set, then include in product */ y *= w; n >>= 1; } done: if( asign ) y = -y; /* odd power of negative number */ if( sign ) y = 1.0/y; return(y); }