/* rgammaf.c * * Reciprocal gamma function * * * * SYNOPSIS: * * float x, y, rgammaf(); * * y = rgammaf( x ); * * * * DESCRIPTION: * * Returns one divided by the gamma function of the argument. * * The function is approximated by a Chebyshev expansion in * the interval [0,1]. Range reduction is by recurrence * for arguments between -34.034 and +34.84425627277176174. * 1/MAXNUMF is returned for positive arguments outside this * range. * * The reciprocal gamma function has no singularities, * but overflow and underflow may occur for large arguments. * These conditions return either MAXNUMF or 1/MAXNUMF with * appropriate sign. * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -34,+34 100000 8.9e-7 1.1e-7 */ /* Cephes Math Library Release 2.2: June, 1992 Copyright 1985, 1987, 1992 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include "mconf.h" /* Chebyshev coefficients for reciprocal gamma function * in interval 0 to 1. Function is 1/(x gamma(x)) - 1 */ static float R[] = { 1.08965386454418662084E-9, -3.33964630686836942556E-8, 2.68975996440595483619E-7, 2.96001177518801696639E-6, -8.04814124978471142852E-5, 4.16609138709688864714E-4, 5.06579864028608725080E-3, -6.41925436109158228810E-2, -4.98558728684003594785E-3, 1.27546015610523951063E-1 }; static char name[] = "rgammaf"; extern float PIF, MAXLOGF, MAXNUMF; #ifdef ANSIC float chbevlf(float, float *, int); float expf(float), logf(float), sinf(float), lgamf(float); float rgammaf(float xx) #else float chbevlf(), expf(), logf(), sinf(), lgamf(); float rgammaf(xx) double xx; #endif { float x, w, y, z; int sign; x = xx; if( x > 34.84425627277176174) { mtherrf( name, UNDERFLOW ); return(1.0/MAXNUMF); } if( x < -34.034 ) { w = -x; z = sinf( PIF*w ); if( z == 0.0 ) return(0.0); if( z < 0.0 ) { sign = 1; z = -z; } else sign = -1; y = logf( w * z / PIF ) + lgamf(w); if( y < -MAXLOGF ) { mtherrf( name, UNDERFLOW ); return( sign * 1.0 / MAXNUMF ); } if( y > MAXLOGF ) { mtherrf( name, OVERFLOW ); return( sign * MAXNUMF ); } return( sign * expf(y)); } z = 1.0; w = x; while( w > 1.0 ) /* Downward recurrence */ { w -= 1.0; z *= w; } while( w < 0.0 ) /* Upward recurrence */ { z /= w; w += 1.0; } if( w == 0.0 ) /* Nonpositive integer */ return(0.0); if( w == 1.0 ) /* Other integer */ return( 1.0/z ); y = w * ( 1.0 + chbevlf( 4.0*w-2.0, R, 10 ) ) / z; return(y); }