/* zetacf.c * * Riemann zeta function * * * * SYNOPSIS: * * float x, y, zetacf(); * * y = zetacf( x ); * * * * DESCRIPTION: * * * * inf. * - -x * zetac(x) = > k , x > 1, * - * k=2 * * is related to the Riemann zeta function by * * Riemann zeta(x) = zetac(x) + 1. * * Extension of the function definition for x < 1 is implemented. * Zero is returned for x > log2(MAXNUM). * * An overflow error may occur for large negative x, due to the * gamma function in the reflection formula. * * ACCURACY: * * Tabulated values have full machine accuracy. * * Relative error: * arithmetic domain # trials peak rms * IEEE 1,50 30000 5.5e-7 7.5e-8 * * */ /* Cephes Math Library Release 2.2: July, 1992 Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include "mconf.h" /* Riemann zeta(x) - 1 * for integer arguments between 0 and 30. */ static float azetacf[] = { -1.50000000000000000000E0, 1.70141183460469231730E38, /* infinity. */ 6.44934066848226436472E-1, 2.02056903159594285400E-1, 8.23232337111381915160E-2, 3.69277551433699263314E-2, 1.73430619844491397145E-2, 8.34927738192282683980E-3, 4.07735619794433937869E-3, 2.00839282608221441785E-3, 9.94575127818085337146E-4, 4.94188604119464558702E-4, 2.46086553308048298638E-4, 1.22713347578489146752E-4, 6.12481350587048292585E-5, 3.05882363070204935517E-5, 1.52822594086518717326E-5, 7.63719763789976227360E-6, 3.81729326499983985646E-6, 1.90821271655393892566E-6, 9.53962033872796113152E-7, 4.76932986787806463117E-7, 2.38450502727732990004E-7, 1.19219925965311073068E-7, 5.96081890512594796124E-8, 2.98035035146522801861E-8, 1.49015548283650412347E-8, 7.45071178983542949198E-9, 3.72533402478845705482E-9, 1.86265972351304900640E-9, 9.31327432419668182872E-10 }; /* 2**x (1 - 1/x) (zeta(x) - 1) = P(1/x)/Q(1/x), 1 <= x <= 10 */ static float P[9] = { 5.85746514569725319540E11, 2.57534127756102572888E11, 4.87781159567948256438E10, 5.15399538023885770696E9, 3.41646073514754094281E8, 1.60837006880656492731E7, 5.92785467342109522998E5, 1.51129169964938823117E4, 2.01822444485997955865E2, }; static float Q[8] = { /* 1.00000000000000000000E0,*/ 3.90497676373371157516E11, 5.22858235368272161797E10, 5.64451517271280543351E9, 3.39006746015350418834E8, 1.79410371500126453702E7, 5.66666825131384797029E5, 1.60382976810944131506E4, 1.96436237223387314144E2, }; /* log(zeta(x) - 1 - 2**-x), 10 <= x <= 50 */ static float A[11] = { 8.70728567484590192539E6, 1.76506865670346462757E8, 2.60889506707483264896E10, 5.29806374009894791647E11, 2.26888156119238241487E13, 3.31884402932705083599E14, 5.13778997975868230192E15, -1.98123688133907171455E15, -9.92763810039983572356E16, 7.82905376180870586444E16, 9.26786275768927717187E16, }; static float B[10] = { /* 1.00000000000000000000E0,*/ -7.92625410563741062861E6, -1.60529969932920229676E8, -2.37669260975543221788E10, -4.80319584350455169857E11, -2.07820961754173320170E13, -2.96075404507272223680E14, -4.86299103694609136686E15, 5.34589509675789930199E15, 5.71464111092297631292E16, -1.79915597658676556828E16, }; /* (1-x) (zeta(x) - 1), 0 <= x <= 1 */ static float R[6] = { -3.28717474506562731748E-1, 1.55162528742623950834E1, -2.48762831680821954401E2, 1.01050368053237678329E3, 1.26726061410235149405E4, -1.11578094770515181334E5, }; static float S[5] = { /* 1.00000000000000000000E0,*/ 1.95107674914060531512E1, 3.17710311750646984099E2, 3.03835500874445748734E3, 2.03665876435770579345E4, 7.43853965136767874343E4, }; #define MAXL2 127 /* * Riemann zeta function, minus one */ extern float MACHEPF, PIO2F, MAXNUMF, PIF; #ifndef ANSIC float sinf(), floorf(), gammaf(), powf(), expf(); float polevlf(), p1evlf(); #endif #ifdef ANSIC float zetacf(float xx) #else float zetacf(xx) double xx; #endif { int i; float x, a, b, s, w; x = xx; if( x < 0.0 ) { if( x < -30.8148 ) { mtherrf( "zetacf", OVERFLOW ); return(0.0); } s = 1.0 - x; w = zetacf( s ); b = sinf(PIO2F*x) * powf(2.0*PIF, x) * gammaf(s) * (1.0 + w) / PIF; return(b - 1.0); } if( x >= MAXL2 ) return(0.0); /* because first term is 2**-x */ /* Tabulated values for integer argument */ w = floorf(x); if( w == x ) { i = x; if( i < 31 ) { return( azetacf[i] ); } } if( x < 1.0 ) { w = 1.0 - x; a = polevlf( x, R, 5 ) / ( w * p1evlf( x, S, 5 )); return( a ); } if( x == 1.0 ) { mtherrf( "zetacf", SING ); return( MAXNUMF ); } if( x <= 10.0 ) { b = powf( 2.0, x ) * (x - 1.0); w = 1.0/x; s = (x * polevlf( w, P, 8 )) / (b * p1evlf( w, Q, 8 )); return( s ); } if( x <= 50.0 ) { b = powf( 2.0, -x ); w = polevlf( x, A, 10 ) / p1evlf( x, B, 10 ); w = expf(w) + b; return(w); } /* Basic sum of inverse powers */ s = 0.0; a = 1.0; do { a += 2.0; b = powf( a, -x ); s += b; } while( b/s > MACHEPF ); b = powf( 2.0, -x ); s = (s + b)/(1.0-b); return(s); }