/* * srtp_driver.c * * a test driver for libSRTP * * David A. McGrew * Cisco Systems, Inc. */ /* * * Copyright (c) 2001-2017, Cisco Systems, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include /* for memcpy() */ #include /* for clock() */ #include /* for malloc(), free() */ #include /* for print(), fflush() */ #include "getopt_s.h" /* for local getopt() */ #include "srtp_priv.h" #include "util.h" #ifdef HAVE_NETINET_IN_H #include #elif defined HAVE_WINSOCK2_H #include #endif #define PRINT_REFERENCE_PACKET 1 srtp_err_status_t srtp_validate(void); #ifdef GCM srtp_err_status_t srtp_validate_gcm(void); #endif srtp_err_status_t srtp_validate_encrypted_extensions_headers(void); #ifdef GCM srtp_err_status_t srtp_validate_encrypted_extensions_headers_gcm(void); #endif srtp_err_status_t srtp_validate_aes_256(void); srtp_err_status_t srtp_create_big_policy(srtp_policy_t **list); srtp_err_status_t srtp_dealloc_big_policy(srtp_policy_t *list); srtp_err_status_t srtp_test_empty_payload(void); #ifdef GCM srtp_err_status_t srtp_test_empty_payload_gcm(void); #endif srtp_err_status_t srtp_test_remove_stream(void); srtp_err_status_t srtp_test_update(void); srtp_err_status_t srtp_test_protect_trailer_length(void); srtp_err_status_t srtp_test_protect_rtcp_trailer_length(void); srtp_err_status_t srtp_test_get_roc(void); srtp_err_status_t srtp_test_set_receiver_roc(void); srtp_err_status_t srtp_test_set_sender_roc(void); double srtp_bits_per_second(int msg_len_octets, const srtp_policy_t *policy); double srtp_rejections_per_second(int msg_len_octets, const srtp_policy_t *policy); void srtp_do_timing(const srtp_policy_t *policy); void srtp_do_rejection_timing(const srtp_policy_t *policy); srtp_err_status_t srtp_test(const srtp_policy_t *policy, int extension_header, int mki_index); srtp_err_status_t srtcp_test(const srtp_policy_t *policy, int mki_index); srtp_err_status_t srtp_session_print_policy(srtp_t srtp); srtp_err_status_t srtp_print_policy(const srtp_policy_t *policy); char *srtp_packet_to_string(srtp_hdr_t *hdr, int packet_len); double mips_estimate(int num_trials, int *ignore); #define TEST_MKI_ID_SIZE 4 extern uint8_t test_key[46]; extern uint8_t test_key_2[46]; extern uint8_t test_mki_id[TEST_MKI_ID_SIZE]; extern uint8_t test_mki_id_2[TEST_MKI_ID_SIZE]; // clang-format off srtp_master_key_t master_key_1 = { test_key, test_mki_id, TEST_MKI_ID_SIZE }; srtp_master_key_t master_key_2 = { test_key_2, test_mki_id_2, TEST_MKI_ID_SIZE }; srtp_master_key_t *test_keys[2] = { &master_key_1, &master_key_2 }; // clang-format on void usage(char *prog_name) { printf("usage: %s [ -t ][ -c ][ -v ][ -o ][-d ]* [ -l ]\n" " -t run timing test\n" " -r run rejection timing test\n" " -c run codec timing test\n" " -v run validation tests\n" " -o output logging to stdout\n" " -d turn on debugging module \n" " -l list debugging modules\n", prog_name); exit(1); } void log_handler(srtp_log_level_t level, const char *msg, void *data) { char level_char = '?'; switch (level) { case srtp_log_level_error: level_char = 'e'; break; case srtp_log_level_warning: level_char = 'w'; break; case srtp_log_level_info: level_char = 'i'; break; case srtp_log_level_debug: level_char = 'd'; break; } printf("SRTP-LOG [%c]: %s\n", level_char, msg); } /* * The policy_array is a null-terminated array of policy structs. it * is declared at the end of this file */ extern const srtp_policy_t *policy_array[]; /* the wildcard_policy is declared below; it has a wildcard ssrc */ extern const srtp_policy_t wildcard_policy; /* * mod_driver debug module - debugging module for this test driver * * we use the crypto_kernel debugging system in this driver, which * makes the interface uniform and increases portability */ srtp_debug_module_t mod_driver = { 0, /* debugging is off by default */ "driver" /* printable name for module */ }; int main(int argc, char *argv[]) { int q; unsigned do_timing_test = 0; unsigned do_rejection_test = 0; unsigned do_codec_timing = 0; unsigned do_validation = 0; unsigned do_list_mods = 0; unsigned do_log_stdout = 0; srtp_err_status_t status; /* * verify that the compiler has interpreted the header data * structure srtp_hdr_t correctly */ if (sizeof(srtp_hdr_t) != 12) { printf("error: srtp_hdr_t has incorrect size" "(size is %ld bytes, expected 12)\n", (long)sizeof(srtp_hdr_t)); exit(1); } /* initialize srtp library */ status = srtp_init(); if (status) { printf("error: srtp init failed with error code %d\n", status); exit(1); } /* load srtp_driver debug module */ status = srtp_crypto_kernel_load_debug_module(&mod_driver); if (status) { printf("error: load of srtp_driver debug module failed " "with error code %d\n", status); exit(1); } /* process input arguments */ while (1) { q = getopt_s(argc, argv, "trcvold:"); if (q == -1) { break; } switch (q) { case 't': do_timing_test = 1; break; case 'r': do_rejection_test = 1; break; case 'c': do_codec_timing = 1; break; case 'v': do_validation = 1; break; case 'o': do_log_stdout = 1; break; case 'l': do_list_mods = 1; break; case 'd': status = srtp_set_debug_module(optarg_s, 1); if (status) { printf("error: set debug module (%s) failed\n", optarg_s); exit(1); } break; default: usage(argv[0]); } } if (!do_validation && !do_timing_test && !do_codec_timing && !do_list_mods && !do_rejection_test) { usage(argv[0]); } if (do_log_stdout) { status = srtp_install_log_handler(log_handler, NULL); if (status) { printf("error: install log handler failed\n"); exit(1); } } if (do_list_mods) { status = srtp_list_debug_modules(); if (status) { printf("error: list of debug modules failed\n"); exit(1); } } if (do_validation) { const srtp_policy_t **policy = policy_array; srtp_policy_t *big_policy; /* loop over policy array, testing srtp and srtcp for each policy */ while (*policy != NULL) { printf("testing srtp_protect and srtp_unprotect\n"); if (srtp_test(*policy, 0, -1) == srtp_err_status_ok) { printf("passed\n\n"); } else { printf("failed\n"); exit(1); } printf("testing srtp_protect and srtp_unprotect with encrypted " "extensions headers\n"); if (srtp_test(*policy, 1, -1) == srtp_err_status_ok) { printf("passed\n\n"); } else { printf("failed\n"); exit(1); } printf("testing srtp_protect_rtcp and srtp_unprotect_rtcp\n"); if (srtcp_test(*policy, -1) == srtp_err_status_ok) { printf("passed\n\n"); } else { printf("failed\n"); exit(1); } printf("testing srtp_protect_rtp and srtp_unprotect_rtp with MKI " "index set to 0\n"); if (srtp_test(*policy, 0, 0) == srtp_err_status_ok) { printf("passed\n\n"); } else { printf("failed\n"); exit(1); } printf("testing srtp_protect_rtp and srtp_unprotect_rtp with MKI " "index set to 1\n"); if (srtp_test(*policy, 0, 1) == srtp_err_status_ok) { printf("passed\n\n"); } else { printf("failed\n"); exit(1); } printf("testing srtp_protect_rtcp and srtp_unprotect_rtcp with MKI " "index set to 0\n"); if (srtcp_test(*policy, 0) == srtp_err_status_ok) { printf("passed\n\n"); } else { printf("failed\n"); exit(1); } printf("testing srtp_protect_rtcp and srtp_unprotect_rtcp with MKI " "index set to 1\n"); if (srtcp_test(*policy, 1) == srtp_err_status_ok) { printf("passed\n\n"); } else { printf("failed\n"); exit(1); } policy++; } /* create a big policy list and run tests on it */ status = srtp_create_big_policy(&big_policy); if (status) { printf("unexpected failure with error code %d\n", status); exit(1); } printf("testing srtp_protect and srtp_unprotect with big policy\n"); if (srtp_test(big_policy, 0, -1) == srtp_err_status_ok) { printf("passed\n\n"); } else { printf("failed\n"); exit(1); } printf("testing srtp_protect and srtp_unprotect with big policy and " "encrypted extensions headers\n"); if (srtp_test(big_policy, 1, -1) == srtp_err_status_ok) { printf("passed\n\n"); } else { printf("failed\n"); exit(1); } status = srtp_dealloc_big_policy(big_policy); if (status) { printf("unexpected failure with error code %d\n", status); exit(1); } /* run test on wildcard policy */ printf("testing srtp_protect and srtp_unprotect on " "wildcard ssrc policy\n"); if (srtp_test(&wildcard_policy, 0, -1) == srtp_err_status_ok) { printf("passed\n\n"); } else { printf("failed\n"); exit(1); } printf("testing srtp_protect and srtp_unprotect on " "wildcard ssrc policy and encrypted extensions headers\n"); if (srtp_test(&wildcard_policy, 1, -1) == srtp_err_status_ok) { printf("passed\n\n"); } else { printf("failed\n"); exit(1); } /* * run validation test against the reference packets - note * that this test only covers the default policy */ printf("testing srtp_protect and srtp_unprotect against " "reference packet\n"); if (srtp_validate() == srtp_err_status_ok) { printf("passed\n\n"); } else { printf("failed\n"); exit(1); } #ifdef GCM printf("testing srtp_protect and srtp_unprotect against " "reference packet using GCM\n"); if (srtp_validate_gcm() == srtp_err_status_ok) { printf("passed\n\n"); } else { printf("failed\n"); exit(1); } #endif printf("testing srtp_protect and srtp_unprotect against " "reference packet with encrypted extensions headers\n"); if (srtp_validate_encrypted_extensions_headers() == srtp_err_status_ok) printf("passed\n\n"); else { printf("failed\n"); exit(1); } #ifdef GCM printf("testing srtp_protect and srtp_unprotect against " "reference packet with encrypted extension headers (GCM)\n"); if (srtp_validate_encrypted_extensions_headers_gcm() == srtp_err_status_ok) { printf("passed\n\n"); } else { printf("failed\n"); exit(1); } #endif /* * run validation test against the reference packets for * AES-256 */ printf("testing srtp_protect and srtp_unprotect against " "reference packet (AES-256)\n"); if (srtp_validate_aes_256() == srtp_err_status_ok) { printf("passed\n\n"); } else { printf("failed\n"); exit(1); } /* * test packets with empty payload */ printf("testing srtp_protect and srtp_unprotect against " "packet with empty payload\n"); if (srtp_test_empty_payload() == srtp_err_status_ok) { printf("passed\n"); } else { printf("failed\n"); exit(1); } #ifdef GCM printf("testing srtp_protect and srtp_unprotect against " "packet with empty payload (GCM)\n"); if (srtp_test_empty_payload_gcm() == srtp_err_status_ok) { printf("passed\n"); } else { printf("failed\n"); exit(1); } #endif /* * test the function srtp_remove_stream() */ printf("testing srtp_remove_stream()..."); if (srtp_test_remove_stream() == srtp_err_status_ok) { printf("passed\n"); } else { printf("failed\n"); exit(1); } /* * test the function srtp_update() */ printf("testing srtp_update()..."); if (srtp_test_update() == srtp_err_status_ok) { printf("passed\n"); } else { printf("failed\n"); exit(1); } /* * test the functions srtp_get_protect_trailer_length * and srtp_get_protect_rtcp_trailer_length */ printf("testing srtp_get_protect_trailer_length()..."); if (srtp_test_protect_trailer_length() == srtp_err_status_ok) { printf("passed\n"); } else { printf("failed\n"); exit(1); } printf("testing srtp_get_protect_rtcp_trailer_length()..."); if (srtp_test_protect_rtcp_trailer_length() == srtp_err_status_ok) { printf("passed\n"); } else { printf("failed\n"); exit(1); } printf("testing srtp_test_get_roc()..."); if (srtp_test_get_roc() == srtp_err_status_ok) { printf("passed\n"); } else { printf("failed\n"); exit(1); } printf("testing srtp_test_set_receiver_roc()..."); if (srtp_test_set_receiver_roc() == srtp_err_status_ok) { printf("passed\n"); } else { printf("failed\n"); exit(1); } printf("testing srtp_test_set_sender_roc()..."); if (srtp_test_set_sender_roc() == srtp_err_status_ok) { printf("passed\n"); } else { printf("failed\n"); exit(1); } } if (do_timing_test) { const srtp_policy_t **policy = policy_array; /* loop over policies, run timing test for each */ while (*policy != NULL) { srtp_print_policy(*policy); srtp_do_timing(*policy); policy++; } } if (do_rejection_test) { const srtp_policy_t **policy = policy_array; /* loop over policies, run rejection timing test for each */ while (*policy != NULL) { srtp_print_policy(*policy); srtp_do_rejection_timing(*policy); policy++; } } if (do_codec_timing) { srtp_policy_t policy; int ignore; double mips_value = mips_estimate(1000000000, &ignore); memset(&policy, 0, sizeof(policy)); srtp_crypto_policy_set_rtp_default(&policy.rtp); srtp_crypto_policy_set_rtcp_default(&policy.rtcp); policy.ssrc.type = ssrc_specific; policy.ssrc.value = 0xdecafbad; policy.key = test_key; policy.ekt = NULL; policy.window_size = 128; policy.allow_repeat_tx = 0; policy.next = NULL; printf("mips estimate: %e\n", mips_value); printf("testing srtp processing time for voice codecs:\n"); printf("codec\t\tlength (octets)\t\tsrtp instructions/second\n"); printf("G.711\t\t%d\t\t\t%e\n", 80, (double)mips_value * (80 * 8) / srtp_bits_per_second(80, &policy) / .01); printf("G.711\t\t%d\t\t\t%e\n", 160, (double)mips_value * (160 * 8) / srtp_bits_per_second(160, &policy) / .02); printf("G.726-32\t%d\t\t\t%e\n", 40, (double)mips_value * (40 * 8) / srtp_bits_per_second(40, &policy) / .01); printf("G.726-32\t%d\t\t\t%e\n", 80, (double)mips_value * (80 * 8) / srtp_bits_per_second(80, &policy) / .02); printf("G.729\t\t%d\t\t\t%e\n", 10, (double)mips_value * (10 * 8) / srtp_bits_per_second(10, &policy) / .01); printf("G.729\t\t%d\t\t\t%e\n", 20, (double)mips_value * (20 * 8) / srtp_bits_per_second(20, &policy) / .02); printf("Wideband\t%d\t\t\t%e\n", 320, (double)mips_value * (320 * 8) / srtp_bits_per_second(320, &policy) / .01); printf("Wideband\t%d\t\t\t%e\n", 640, (double)mips_value * (640 * 8) / srtp_bits_per_second(640, &policy) / .02); } status = srtp_shutdown(); if (status) { printf("error: srtp shutdown failed with error code %d\n", status); exit(1); } return 0; } /* * srtp_create_test_packet(len, ssrc) returns a pointer to a * (malloced) example RTP packet whose data field has the length given * by pkt_octet_len and the SSRC value ssrc. The total length of the * packet is twelve octets longer, since the header is at the * beginning. There is room at the end of the packet for a trailer, * and the four octets following the packet are filled with 0xff * values to enable testing for overwrites. * * note that the location of the test packet can (and should) be * deallocated with the free() call once it is no longer needed. */ srtp_hdr_t *srtp_create_test_packet(int pkt_octet_len, uint32_t ssrc, int *pkt_len) { int i; uint8_t *buffer; srtp_hdr_t *hdr; int bytes_in_hdr = 12; /* allocate memory for test packet */ hdr = (srtp_hdr_t *)malloc(pkt_octet_len + bytes_in_hdr + SRTP_MAX_TRAILER_LEN + 4); if (!hdr) { return NULL; } hdr->version = 2; /* RTP version two */ hdr->p = 0; /* no padding needed */ hdr->x = 0; /* no header extension */ hdr->cc = 0; /* no CSRCs */ hdr->m = 0; /* marker bit */ hdr->pt = 0xf; /* payload type */ hdr->seq = htons(0x1234); /* sequence number */ hdr->ts = htonl(0xdecafbad); /* timestamp */ hdr->ssrc = htonl(ssrc); /* synch. source */ buffer = (uint8_t *)hdr; buffer += bytes_in_hdr; /* set RTP data to 0xab */ for (i = 0; i < pkt_octet_len; i++) { *buffer++ = 0xab; } /* set post-data value to 0xffff to enable overrun checking */ for (i = 0; i < SRTP_MAX_TRAILER_LEN + 4; i++) { *buffer++ = 0xff; } *pkt_len = bytes_in_hdr + pkt_octet_len; return hdr; } static srtp_hdr_t *srtp_create_test_packet_extended(int pkt_octet_len, uint32_t ssrc, uint16_t seq, uint32_t ts, int *pkt_len) { srtp_hdr_t *hdr; hdr = srtp_create_test_packet(pkt_octet_len, ssrc, pkt_len); if (hdr == NULL) return hdr; hdr->seq = htons(seq); hdr->ts = htonl(ts); return hdr; } srtp_hdr_t *srtp_create_test_packet_ext_hdr(int pkt_octet_len, uint32_t ssrc, int *pkt_len) { int i; uint8_t *buffer; srtp_hdr_t *hdr; int bytes_in_hdr = 12; uint8_t extension_header[12] = { /* one-byte header */ 0xbe, 0xde, /* size */ 0x00, 0x02, /* id 1, length 1 (i.e. 2 bytes) */ 0x11, /* payload */ 0xca, 0xfe, /* padding */ 0x00, /* id 2, length 0 (i.e. 1 byte) */ 0x20, /* payload */ 0xba, /* padding */ 0x00, 0x00 }; /* allocate memory for test packet */ hdr = (srtp_hdr_t *)malloc(pkt_octet_len + bytes_in_hdr + sizeof(extension_header) + SRTP_MAX_TRAILER_LEN + 4); if (!hdr) return NULL; hdr->version = 2; /* RTP version two */ hdr->p = 0; /* no padding needed */ hdr->x = 1; /* no header extension */ hdr->cc = 0; /* no CSRCs */ hdr->m = 0; /* marker bit */ hdr->pt = 0xf; /* payload type */ hdr->seq = htons(0x1234); /* sequence number */ hdr->ts = htonl(0xdecafbad); /* timestamp */ hdr->ssrc = htonl(ssrc); /* synch. source */ buffer = (uint8_t *)hdr; buffer += bytes_in_hdr; memcpy(buffer, extension_header, sizeof(extension_header)); buffer += sizeof(extension_header); /* set RTP data to 0xab */ for (i = 0; i < pkt_octet_len; i++) *buffer++ = 0xab; /* set post-data value to 0xffff to enable overrun checking */ for (i = 0; i < SRTP_MAX_TRAILER_LEN + 4; i++) *buffer++ = 0xff; *pkt_len = bytes_in_hdr + sizeof(extension_header) + pkt_octet_len; return hdr; } void srtp_do_timing(const srtp_policy_t *policy) { int len; /* * note: the output of this function is formatted so that it * can be used in gnuplot. '#' indicates a comment, and "\r\n" * terminates a record */ printf("# testing srtp throughput:\r\n"); printf("# mesg length (octets)\tthroughput (megabits per second)\r\n"); for (len = 16; len <= 2048; len *= 2) { printf("%d\t\t\t%f\r\n", len, srtp_bits_per_second(len, policy) / 1.0E6); } /* these extra linefeeds let gnuplot know that a dataset is done */ printf("\r\n\r\n"); } void srtp_do_rejection_timing(const srtp_policy_t *policy) { int len; /* * note: the output of this function is formatted so that it * can be used in gnuplot. '#' indicates a comment, and "\r\n" * terminates a record */ printf("# testing srtp rejection throughput:\r\n"); printf("# mesg length (octets)\trejections per second\r\n"); for (len = 8; len <= 2048; len *= 2) { printf("%d\t\t\t%e\r\n", len, srtp_rejections_per_second(len, policy)); } /* these extra linefeeds let gnuplot know that a dataset is done */ printf("\r\n\r\n"); } #define MAX_MSG_LEN 1024 double srtp_bits_per_second(int msg_len_octets, const srtp_policy_t *policy) { srtp_t srtp; srtp_hdr_t *mesg; int i; clock_t timer; int num_trials = 100000; int input_len, len; uint32_t ssrc; srtp_err_status_t status; /* * allocate and initialize an srtp session */ status = srtp_create(&srtp, policy); if (status) { printf("error: srtp_create() failed with error code %d\n", status); exit(1); } /* * if the ssrc is unspecified, use a predetermined one */ if (policy->ssrc.type != ssrc_specific) { ssrc = 0xdeadbeef; } else { ssrc = policy->ssrc.value; } /* * create a test packet */ mesg = srtp_create_test_packet(msg_len_octets, ssrc, &input_len); if (mesg == NULL) { return 0.0; /* indicate failure by returning zero */ } timer = clock(); for (i = 0; i < num_trials; i++) { len = input_len; /* srtp protect message */ status = srtp_protect(srtp, mesg, &len); if (status) { printf("error: srtp_protect() failed with error code %d\n", status); exit(1); } /* increment message number */ { /* hack sequence to avoid problems with macros for htons/ntohs on * some systems */ short new_seq = ntohs(mesg->seq) + 1; mesg->seq = htons(new_seq); } } timer = clock() - timer; free(mesg); status = srtp_dealloc(srtp); if (status) { printf("error: srtp_dealloc() failed with error code %d\n", status); exit(1); } return (double)(msg_len_octets)*8 * num_trials * CLOCKS_PER_SEC / timer; } double srtp_rejections_per_second(int msg_len_octets, const srtp_policy_t *policy) { srtp_ctx_t *srtp; srtp_hdr_t *mesg; int i; int len; clock_t timer; int num_trials = 1000000; uint32_t ssrc = policy->ssrc.value; srtp_err_status_t status; /* * allocate and initialize an srtp session */ status = srtp_create(&srtp, policy); if (status) { printf("error: srtp_create() failed with error code %d\n", status); exit(1); } mesg = srtp_create_test_packet(msg_len_octets, ssrc, &len); if (mesg == NULL) { return 0.0; /* indicate failure by returning zero */ } srtp_protect(srtp, (srtp_hdr_t *)mesg, &len); timer = clock(); for (i = 0; i < num_trials; i++) { len = msg_len_octets; srtp_unprotect(srtp, (srtp_hdr_t *)mesg, &len); } timer = clock() - timer; free(mesg); status = srtp_dealloc(srtp); if (status) { printf("error: srtp_dealloc() failed with error code %d\n", status); exit(1); } return (double)num_trials * CLOCKS_PER_SEC / timer; } void err_check(srtp_err_status_t s) { if (s == srtp_err_status_ok) { return; } else { fprintf(stderr, "error: unexpected srtp failure (code %d)\n", s); } exit(1); } srtp_err_status_t srtp_test_call_protect(srtp_t srtp_sender, srtp_hdr_t *hdr, int *len, int mki_index) { if (mki_index == -1) { return srtp_protect(srtp_sender, hdr, len); } else { return srtp_protect_mki(srtp_sender, hdr, len, 1, mki_index); } } srtp_err_status_t srtp_test_call_protect_rtcp(srtp_t srtp_sender, srtp_hdr_t *hdr, int *len, int mki_index) { if (mki_index == -1) { return srtp_protect_rtcp(srtp_sender, hdr, len); } else { return srtp_protect_rtcp_mki(srtp_sender, hdr, len, 1, mki_index); } } srtp_err_status_t srtp_test_call_unprotect(srtp_t srtp_sender, srtp_hdr_t *hdr, int *len, int use_mki) { if (use_mki == -1) { return srtp_unprotect(srtp_sender, hdr, len); } else { return srtp_unprotect_mki(srtp_sender, hdr, len, use_mki); } } srtp_err_status_t srtp_test_call_unprotect_rtcp(srtp_t srtp_sender, srtp_hdr_t *hdr, int *len, int use_mki) { if (use_mki == -1) { return srtp_unprotect_rtcp(srtp_sender, hdr, len); } else { return srtp_unprotect_rtcp_mki(srtp_sender, hdr, len, use_mki); } } srtp_err_status_t srtp_test(const srtp_policy_t *policy, int extension_header, int mki_index) { int i; srtp_t srtp_sender; srtp_t srtp_rcvr; srtp_err_status_t status = srtp_err_status_ok; srtp_hdr_t *hdr, *hdr2; uint8_t hdr_enc[64]; uint8_t *pkt_end; int msg_len_octets, msg_len_enc, msg_len; int len, len2; uint32_t tag_length; uint32_t ssrc; srtp_policy_t *rcvr_policy; srtp_policy_t tmp_policy; int header = 1; int use_mki = 0; if (mki_index >= 0) use_mki = 1; if (extension_header) { memcpy(&tmp_policy, policy, sizeof(srtp_policy_t)); tmp_policy.enc_xtn_hdr = &header; tmp_policy.enc_xtn_hdr_count = 1; err_check(srtp_create(&srtp_sender, &tmp_policy)); } else { err_check(srtp_create(&srtp_sender, policy)); } /* print out policy */ err_check(srtp_session_print_policy(srtp_sender)); /* * initialize data buffer, using the ssrc in the policy unless that * value is a wildcard, in which case we'll just use an arbitrary * one */ if (policy->ssrc.type != ssrc_specific) { ssrc = 0xdecafbad; } else { ssrc = policy->ssrc.value; } msg_len_octets = 28; if (extension_header) { hdr = srtp_create_test_packet_ext_hdr(msg_len_octets, ssrc, &len); hdr2 = srtp_create_test_packet_ext_hdr(msg_len_octets, ssrc, &len2); } else { hdr = srtp_create_test_packet(msg_len_octets, ssrc, &len); hdr2 = srtp_create_test_packet(msg_len_octets, ssrc, &len2); } /* save original msg len */ msg_len = len; if (hdr == NULL) { free(hdr2); return srtp_err_status_alloc_fail; } if (hdr2 == NULL) { free(hdr); return srtp_err_status_alloc_fail; } debug_print(mod_driver, "before protection:\n%s", srtp_packet_to_string(hdr, len)); #if PRINT_REFERENCE_PACKET debug_print(mod_driver, "reference packet before protection:\n%s", octet_string_hex_string((uint8_t *)hdr, len)); #endif err_check(srtp_test_call_protect(srtp_sender, hdr, &len, mki_index)); debug_print(mod_driver, "after protection:\n%s", srtp_packet_to_string(hdr, len)); #if PRINT_REFERENCE_PACKET debug_print(mod_driver, "after protection:\n%s", octet_string_hex_string((uint8_t *)hdr, len)); #endif /* save protected message and length */ memcpy(hdr_enc, hdr, len); msg_len_enc = len; /* * check for overrun of the srtp_protect() function * * The packet is followed by a value of 0xfffff; if the value of the * data following the packet is different, then we know that the * protect function is overwriting the end of the packet. */ err_check(srtp_get_protect_trailer_length(srtp_sender, use_mki, mki_index, &tag_length)); pkt_end = (uint8_t *)hdr + msg_len + tag_length; for (i = 0; i < 4; i++) { if (pkt_end[i] != 0xff) { fprintf(stdout, "overwrite in srtp_protect() function " "(expected %x, found %x in trailing octet %d)\n", 0xff, ((uint8_t *)hdr)[i], i); free(hdr); free(hdr2); return srtp_err_status_algo_fail; } } /* * if the policy includes confidentiality, check that ciphertext is * different than plaintext * * Note that this check will give false negatives, with some small * probability, especially if the packets are short. For that * reason, we skip this check if the plaintext is less than four * octets long. */ if ((policy->rtp.sec_serv & sec_serv_conf) && (msg_len_octets >= 4)) { printf("testing that ciphertext is distinct from plaintext..."); status = srtp_err_status_algo_fail; for (i = 12; i < msg_len_octets + 12; i++) { if (((uint8_t *)hdr)[i] != ((uint8_t *)hdr2)[i]) { status = srtp_err_status_ok; } } if (status) { printf("failed\n"); free(hdr); free(hdr2); return status; } printf("passed\n"); } /* * if the policy uses a 'wildcard' ssrc, then we need to make a copy * of the policy that changes the direction to inbound * * we always copy the policy into the rcvr_policy, since otherwise * the compiler would fret about the constness of the policy */ rcvr_policy = (srtp_policy_t *)malloc(sizeof(srtp_policy_t)); if (rcvr_policy == NULL) { free(hdr); free(hdr2); return srtp_err_status_alloc_fail; } if (extension_header) { memcpy(rcvr_policy, &tmp_policy, sizeof(srtp_policy_t)); if (tmp_policy.ssrc.type == ssrc_any_outbound) { rcvr_policy->ssrc.type = ssrc_any_inbound; } } else { memcpy(rcvr_policy, policy, sizeof(srtp_policy_t)); if (policy->ssrc.type == ssrc_any_outbound) { rcvr_policy->ssrc.type = ssrc_any_inbound; } } err_check(srtp_create(&srtp_rcvr, rcvr_policy)); err_check(srtp_test_call_unprotect(srtp_rcvr, hdr, &len, use_mki)); debug_print(mod_driver, "after unprotection:\n%s", srtp_packet_to_string(hdr, len)); /* verify that the unprotected packet matches the origial one */ for (i = 0; i < len; i++) { if (((uint8_t *)hdr)[i] != ((uint8_t *)hdr2)[i]) { fprintf(stdout, "mismatch at octet %d\n", i); status = srtp_err_status_algo_fail; } } if (status) { free(hdr); free(hdr2); free(rcvr_policy); return status; } /* * if the policy includes authentication, then test for false positives */ if (policy->rtp.sec_serv & sec_serv_auth) { char *data = ((char *)hdr) + (extension_header ? 24 : 12); printf("testing for false positives in replay check..."); /* unprotect a second time - should fail with a replay error */ status = srtp_test_call_unprotect(srtp_rcvr, hdr, &msg_len_enc, use_mki); if (status != srtp_err_status_replay_fail) { printf("failed with error code %d\n", status); free(hdr); free(hdr2); free(rcvr_policy); return status; } else { printf("passed\n"); } printf("testing for false positives in auth check..."); /* increment sequence number in header */ hdr->seq++; /* apply protection */ err_check(srtp_test_call_protect(srtp_sender, hdr, &len, mki_index)); /* flip bits in packet */ data[0] ^= 0xff; /* unprotect, and check for authentication failure */ status = srtp_test_call_unprotect(srtp_rcvr, hdr, &len, use_mki); if (status != srtp_err_status_auth_fail) { printf("failed\n"); free(hdr); free(hdr2); free(rcvr_policy); return status; } else { printf("passed\n"); } } err_check(srtp_dealloc(srtp_sender)); err_check(srtp_dealloc(srtp_rcvr)); free(hdr); free(hdr2); free(rcvr_policy); return srtp_err_status_ok; } srtp_err_status_t srtcp_test(const srtp_policy_t *policy, int mki_index) { int i; srtp_t srtcp_sender; srtp_t srtcp_rcvr; srtp_err_status_t status = srtp_err_status_ok; srtp_hdr_t *hdr, *hdr2; uint8_t hdr_enc[64]; uint8_t *pkt_end; int msg_len_octets, msg_len_enc, msg_len; int len, len2; uint32_t tag_length; uint32_t ssrc; srtp_policy_t *rcvr_policy; int use_mki = 0; if (mki_index >= 0) use_mki = 1; err_check(srtp_create(&srtcp_sender, policy)); /* print out policy */ err_check(srtp_session_print_policy(srtcp_sender)); /* * initialize data buffer, using the ssrc in the policy unless that * value is a wildcard, in which case we'll just use an arbitrary * one */ if (policy->ssrc.type != ssrc_specific) { ssrc = 0xdecafbad; } else { ssrc = policy->ssrc.value; } msg_len_octets = 28; hdr = srtp_create_test_packet(msg_len_octets, ssrc, &len); /* save message len */ msg_len = len; if (hdr == NULL) { return srtp_err_status_alloc_fail; } hdr2 = srtp_create_test_packet(msg_len_octets, ssrc, &len2); if (hdr2 == NULL) { free(hdr); return srtp_err_status_alloc_fail; } debug_print(mod_driver, "before protection:\n%s", srtp_packet_to_string(hdr, len)); #if PRINT_REFERENCE_PACKET debug_print(mod_driver, "reference packet before protection:\n%s", octet_string_hex_string((uint8_t *)hdr, len)); #endif err_check(srtp_test_call_protect_rtcp(srtcp_sender, hdr, &len, mki_index)); debug_print(mod_driver, "after protection:\n%s", srtp_packet_to_string(hdr, len)); #if PRINT_REFERENCE_PACKET debug_print(mod_driver, "after protection:\n%s", octet_string_hex_string((uint8_t *)hdr, len)); #endif /* save protected message and length */ memcpy(hdr_enc, hdr, len); msg_len_enc = len; /* * check for overrun of the srtp_protect() function * * The packet is followed by a value of 0xfffff; if the value of the * data following the packet is different, then we know that the * protect function is overwriting the end of the packet. */ srtp_get_protect_rtcp_trailer_length(srtcp_sender, use_mki, mki_index, &tag_length); pkt_end = (uint8_t *)hdr + msg_len + tag_length; for (i = 0; i < 4; i++) { if (pkt_end[i] != 0xff) { fprintf(stdout, "overwrite in srtp_protect_rtcp() function " "(expected %x, found %x in trailing octet %d)\n", 0xff, ((uint8_t *)hdr)[i], i); free(hdr); free(hdr2); return srtp_err_status_algo_fail; } } /* * if the policy includes confidentiality, check that ciphertext is * different than plaintext * * Note that this check will give false negatives, with some small * probability, especially if the packets are short. For that * reason, we skip this check if the plaintext is less than four * octets long. */ if ((policy->rtcp.sec_serv & sec_serv_conf) && (msg_len_octets >= 4)) { printf("testing that ciphertext is distinct from plaintext..."); status = srtp_err_status_algo_fail; for (i = 12; i < msg_len_octets + 12; i++) { if (((uint8_t *)hdr)[i] != ((uint8_t *)hdr2)[i]) { status = srtp_err_status_ok; } } if (status) { printf("failed\n"); free(hdr); free(hdr2); return status; } printf("passed\n"); } /* * if the policy uses a 'wildcard' ssrc, then we need to make a copy * of the policy that changes the direction to inbound * * we always copy the policy into the rcvr_policy, since otherwise * the compiler would fret about the constness of the policy */ rcvr_policy = (srtp_policy_t *)malloc(sizeof(srtp_policy_t)); if (rcvr_policy == NULL) { free(hdr); free(hdr2); return srtp_err_status_alloc_fail; } memcpy(rcvr_policy, policy, sizeof(srtp_policy_t)); if (policy->ssrc.type == ssrc_any_outbound) { rcvr_policy->ssrc.type = ssrc_any_inbound; } err_check(srtp_create(&srtcp_rcvr, rcvr_policy)); err_check(srtp_test_call_unprotect_rtcp(srtcp_rcvr, hdr, &len, use_mki)); debug_print(mod_driver, "after unprotection:\n%s", srtp_packet_to_string(hdr, len)); /* verify that the unprotected packet matches the origial one */ for (i = 0; i < len; i++) { if (((uint8_t *)hdr)[i] != ((uint8_t *)hdr2)[i]) { fprintf(stdout, "mismatch at octet %d\n", i); status = srtp_err_status_algo_fail; } } if (status) { free(hdr); free(hdr2); free(rcvr_policy); return status; } /* * if the policy includes authentication, then test for false positives */ if (policy->rtp.sec_serv & sec_serv_auth) { char *data = ((char *)hdr) + 12; printf("testing for false positives in replay check..."); /* unprotect a second time - should fail with a replay error */ status = srtp_test_call_unprotect_rtcp(srtcp_rcvr, hdr, &msg_len_enc, use_mki); if (status != srtp_err_status_replay_fail) { printf("failed with error code %d\n", status); free(hdr); free(hdr2); free(rcvr_policy); return status; } else { printf("passed\n"); } printf("testing for false positives in auth check..."); /* increment sequence number in header */ hdr->seq++; /* apply protection */ err_check( srtp_test_call_protect_rtcp(srtcp_sender, hdr, &len, mki_index)); /* flip bits in packet */ data[0] ^= 0xff; /* unprotect, and check for authentication failure */ status = srtp_test_call_unprotect_rtcp(srtcp_rcvr, hdr, &len, use_mki); if (status != srtp_err_status_auth_fail) { printf("failed\n"); free(hdr); free(hdr2); free(rcvr_policy); return status; } else { printf("passed\n"); } } err_check(srtp_dealloc(srtcp_sender)); err_check(srtp_dealloc(srtcp_rcvr)); free(hdr); free(hdr2); free(rcvr_policy); return srtp_err_status_ok; } srtp_err_status_t srtp_session_print_policy(srtp_t srtp) { char *serv_descr[4] = { "none", "confidentiality", "authentication", "confidentiality and authentication" }; char *direction[3] = { "unknown", "outbound", "inbound" }; srtp_stream_t stream; srtp_session_keys_t *session_keys = NULL; /* sanity checking */ if (srtp == NULL) { return srtp_err_status_fail; } /* if there's a template stream, print it out */ if (srtp->stream_template != NULL) { stream = srtp->stream_template; session_keys = &stream->session_keys[0]; printf("# SSRC: any %s\r\n" "# rtp cipher: %s\r\n" "# rtp auth: %s\r\n" "# rtp services: %s\r\n" "# rtcp cipher: %s\r\n" "# rtcp auth: %s\r\n" "# rtcp services: %s\r\n" "# window size: %lu\r\n" "# tx rtx allowed:%s\r\n", direction[stream->direction], session_keys->rtp_cipher->type->description, session_keys->rtp_auth->type->description, serv_descr[stream->rtp_services], session_keys->rtcp_cipher->type->description, session_keys->rtcp_auth->type->description, serv_descr[stream->rtcp_services], srtp_rdbx_get_window_size(&stream->rtp_rdbx), stream->allow_repeat_tx ? "true" : "false"); printf("# Encrypted extension headers: "); if (stream->enc_xtn_hdr && stream->enc_xtn_hdr_count > 0) { int *enc_xtn_hdr = stream->enc_xtn_hdr; int count = stream->enc_xtn_hdr_count; while (count > 0) { printf("%d ", *enc_xtn_hdr); enc_xtn_hdr++; count--; } printf("\n"); } else { printf("none\n"); } } /* loop over streams in session, printing the policy of each */ stream = srtp->stream_list; while (stream != NULL) { if (stream->rtp_services > sec_serv_conf_and_auth) { return srtp_err_status_bad_param; } session_keys = &stream->session_keys[0]; printf("# SSRC: 0x%08x\r\n" "# rtp cipher: %s\r\n" "# rtp auth: %s\r\n" "# rtp services: %s\r\n" "# rtcp cipher: %s\r\n" "# rtcp auth: %s\r\n" "# rtcp services: %s\r\n" "# window size: %lu\r\n" "# tx rtx allowed:%s\r\n", stream->ssrc, session_keys->rtp_cipher->type->description, session_keys->rtp_auth->type->description, serv_descr[stream->rtp_services], session_keys->rtcp_cipher->type->description, session_keys->rtcp_auth->type->description, serv_descr[stream->rtcp_services], srtp_rdbx_get_window_size(&stream->rtp_rdbx), stream->allow_repeat_tx ? "true" : "false"); printf("# Encrypted extension headers: "); if (stream->enc_xtn_hdr && stream->enc_xtn_hdr_count > 0) { int *enc_xtn_hdr = stream->enc_xtn_hdr; int count = stream->enc_xtn_hdr_count; while (count > 0) { printf("%d ", *enc_xtn_hdr); enc_xtn_hdr++; count--; } printf("\n"); } else { printf("none\n"); } /* advance to next stream in the list */ stream = stream->next; } return srtp_err_status_ok; } srtp_err_status_t srtp_print_policy(const srtp_policy_t *policy) { srtp_err_status_t status; srtp_t session; status = srtp_create(&session, policy); if (status) { return status; } status = srtp_session_print_policy(session); if (status) { return status; } status = srtp_dealloc(session); if (status) { return status; } return srtp_err_status_ok; } /* * srtp_print_packet(...) is for debugging only * it prints an RTP packet to the stdout * * note that this function is *not* threadsafe */ #include #define MTU 2048 char packet_string[MTU]; char *srtp_packet_to_string(srtp_hdr_t *hdr, int pkt_octet_len) { int octets_in_rtp_header = 12; uint8_t *data = ((uint8_t *)hdr) + octets_in_rtp_header; int hex_len = pkt_octet_len - octets_in_rtp_header; /* sanity checking */ if ((hdr == NULL) || (pkt_octet_len > MTU)) { return NULL; } /* write packet into string */ sprintf(packet_string, "(s)rtp packet: {\n" " version:\t%d\n" " p:\t\t%d\n" " x:\t\t%d\n" " cc:\t\t%d\n" " m:\t\t%d\n" " pt:\t\t%x\n" " seq:\t\t%x\n" " ts:\t\t%x\n" " ssrc:\t%x\n" " data:\t%s\n" "} (%d octets in total)\n", hdr->version, hdr->p, hdr->x, hdr->cc, hdr->m, hdr->pt, hdr->seq, hdr->ts, hdr->ssrc, octet_string_hex_string(data, hex_len), pkt_octet_len); return packet_string; } /* * mips_estimate() is a simple function to estimate the number of * instructions per second that the host can perform. note that this * function can be grossly wrong; you may want to have a manual sanity * check of its output! * * the 'ignore' pointer is there to convince the compiler to not just * optimize away the function */ double mips_estimate(int num_trials, int *ignore) { clock_t t; volatile int i, sum; sum = 0; t = clock(); for (i = 0; i < num_trials; i++) { sum += i; } t = clock() - t; if (t < 1) { t = 1; } /* printf("%d\n", sum); */ *ignore = sum; return (double)num_trials * CLOCKS_PER_SEC / t; } /* * srtp_validate() verifies the correctness of libsrtp by comparing * some computed packets against some pre-computed reference values. * These packets were made with the default SRTP policy. */ srtp_err_status_t srtp_validate() { // clang-format off uint8_t srtp_plaintext_ref[28] = { 0x80, 0x0f, 0x12, 0x34, 0xde, 0xca, 0xfb, 0xad, 0xca, 0xfe, 0xba, 0xbe, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab }; uint8_t srtp_plaintext[38] = { 0x80, 0x0f, 0x12, 0x34, 0xde, 0xca, 0xfb, 0xad, 0xca, 0xfe, 0xba, 0xbe, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t srtp_ciphertext[38] = { 0x80, 0x0f, 0x12, 0x34, 0xde, 0xca, 0xfb, 0xad, 0xca, 0xfe, 0xba, 0xbe, 0x4e, 0x55, 0xdc, 0x4c, 0xe7, 0x99, 0x78, 0xd8, 0x8c, 0xa4, 0xd2, 0x15, 0x94, 0x9d, 0x24, 0x02, 0xb7, 0x8d, 0x6a, 0xcc, 0x99, 0xea, 0x17, 0x9b, 0x8d, 0xbb }; uint8_t rtcp_plaintext_ref[24] = { 0x81, 0xc8, 0x00, 0x0b, 0xca, 0xfe, 0xba, 0xbe, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, }; uint8_t rtcp_plaintext[38] = { 0x81, 0xc8, 0x00, 0x0b, 0xca, 0xfe, 0xba, 0xbe, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t srtcp_ciphertext[38] = { 0x81, 0xc8, 0x00, 0x0b, 0xca, 0xfe, 0xba, 0xbe, 0x71, 0x28, 0x03, 0x5b, 0xe4, 0x87, 0xb9, 0xbd, 0xbe, 0xf8, 0x90, 0x41, 0xf9, 0x77, 0xa5, 0xa8, 0x80, 0x00, 0x00, 0x01, 0x99, 0x3e, 0x08, 0xcd, 0x54, 0xd6, 0xc1, 0x23, 0x07, 0x98 }; // clang-format on srtp_t srtp_snd, srtp_recv; srtp_err_status_t status; int len; srtp_policy_t policy; /* * create a session with a single stream using the default srtp * policy and with the SSRC value 0xcafebabe */ memset(&policy, 0, sizeof(policy)); srtp_crypto_policy_set_rtp_default(&policy.rtp); srtp_crypto_policy_set_rtcp_default(&policy.rtcp); policy.ssrc.type = ssrc_specific; policy.ssrc.value = 0xcafebabe; policy.key = test_key; policy.ekt = NULL; policy.window_size = 128; policy.allow_repeat_tx = 0; policy.next = NULL; status = srtp_create(&srtp_snd, &policy); if (status) { return status; } /* * protect plaintext, then compare with ciphertext */ len = 28; status = srtp_protect(srtp_snd, srtp_plaintext, &len); if (status || (len != 38)) { return srtp_err_status_fail; } debug_print(mod_driver, "ciphertext:\n %s", octet_string_hex_string(srtp_plaintext, len)); debug_print(mod_driver, "ciphertext reference:\n %s", octet_string_hex_string(srtp_ciphertext, len)); if (srtp_octet_string_is_eq(srtp_plaintext, srtp_ciphertext, len)) { return srtp_err_status_fail; } /* * protect plaintext rtcp, then compare with srtcp ciphertext */ len = 24; status = srtp_protect_rtcp(srtp_snd, rtcp_plaintext, &len); if (status || (len != 38)) { return srtp_err_status_fail; } debug_print(mod_driver, "srtcp ciphertext:\n %s", octet_string_hex_string(rtcp_plaintext, len)); debug_print(mod_driver, "srtcp ciphertext reference:\n %s", octet_string_hex_string(srtcp_ciphertext, len)); if (srtp_octet_string_is_eq(rtcp_plaintext, srtcp_ciphertext, len)) { return srtp_err_status_fail; } /* * create a receiver session context comparable to the one created * above - we need to do this so that the replay checking doesn't * complain */ status = srtp_create(&srtp_recv, &policy); if (status) { return status; } /* * unprotect ciphertext, then compare with plaintext */ status = srtp_unprotect(srtp_recv, srtp_ciphertext, &len); if (status || (len != 28)) { return status; } if (srtp_octet_string_is_eq(srtp_ciphertext, srtp_plaintext_ref, len)) { return srtp_err_status_fail; } /* * unprotect srtcp ciphertext, then compare with rtcp plaintext */ len = 38; status = srtp_unprotect_rtcp(srtp_recv, srtcp_ciphertext, &len); if (status || (len != 24)) { return status; } if (srtp_octet_string_is_eq(srtcp_ciphertext, rtcp_plaintext_ref, len)) { return srtp_err_status_fail; } status = srtp_dealloc(srtp_snd); if (status) { return status; } status = srtp_dealloc(srtp_recv); if (status) { return status; } return srtp_err_status_ok; } #ifdef GCM /* * srtp_validate_gcm() verifies the correctness of libsrtp by comparing * an computed packet against the known ciphertext for the plaintext. */ srtp_err_status_t srtp_validate_gcm() { // clang-format off unsigned char test_key_gcm[28] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xab }; uint8_t rtp_plaintext_ref[28] = { 0x80, 0x0f, 0x12, 0x34, 0xde, 0xca, 0xfb, 0xad, 0xca, 0xfe, 0xba, 0xbe, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab }; uint8_t rtp_plaintext[44] = { 0x80, 0x0f, 0x12, 0x34, 0xde, 0xca, 0xfb, 0xad, 0xca, 0xfe, 0xba, 0xbe, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t srtp_ciphertext[44] = { 0x80, 0x0f, 0x12, 0x34, 0xde, 0xca, 0xfb, 0xad, 0xca, 0xfe, 0xba, 0xbe, 0xc5, 0x00, 0x2e, 0xde, 0x04, 0xcf, 0xdd, 0x2e, 0xb9, 0x11, 0x59, 0xe0, 0x88, 0x0a, 0xa0, 0x6e, 0xd2, 0x97, 0x68, 0x26, 0xf7, 0x96, 0xb2, 0x01, 0xdf, 0x31, 0x31, 0xa1, 0x27, 0xe8, 0xa3, 0x92 }; uint8_t rtcp_plaintext_ref[24] = { 0x81, 0xc8, 0x00, 0x0b, 0xca, 0xfe, 0xba, 0xbe, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, }; uint8_t rtcp_plaintext[44] = { 0x81, 0xc8, 0x00, 0x0b, 0xca, 0xfe, 0xba, 0xbe, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t srtcp_ciphertext[44] = { 0x81, 0xc8, 0x00, 0x0b, 0xca, 0xfe, 0xba, 0xbe, 0xc9, 0x8b, 0x8b, 0x5d, 0xf0, 0x39, 0x2a, 0x55, 0x85, 0x2b, 0x6c, 0x21, 0xac, 0x8e, 0x70, 0x25, 0xc5, 0x2c, 0x6f, 0xbe, 0xa2, 0xb3, 0xb4, 0x46, 0xea, 0x31, 0x12, 0x3b, 0xa8, 0x8c, 0xe6, 0x1e, 0x80, 0x00, 0x00, 0x01 }; // clang-format on srtp_t srtp_snd, srtp_recv; srtp_err_status_t status; int len; srtp_policy_t policy; /* * create a session with a single stream using the default srtp * policy and with the SSRC value 0xcafebabe */ memset(&policy, 0, sizeof(policy)); srtp_crypto_policy_set_aes_gcm_128_16_auth(&policy.rtp); srtp_crypto_policy_set_aes_gcm_128_16_auth(&policy.rtcp); policy.ssrc.type = ssrc_specific; policy.ssrc.value = 0xcafebabe; policy.key = test_key_gcm; policy.ekt = NULL; policy.window_size = 128; policy.allow_repeat_tx = 0; policy.next = NULL; status = srtp_create(&srtp_snd, &policy); if (status) { return status; } /* * protect plaintext rtp, then compare with srtp ciphertext */ len = 28; status = srtp_protect(srtp_snd, rtp_plaintext, &len); if (status || (len != 44)) { return srtp_err_status_fail; } debug_print(mod_driver, "srtp ciphertext:\n %s", octet_string_hex_string(rtp_plaintext, len)); debug_print(mod_driver, "srtp ciphertext reference:\n %s", octet_string_hex_string(srtp_ciphertext, len)); if (srtp_octet_string_is_eq(rtp_plaintext, srtp_ciphertext, len)) { return srtp_err_status_fail; } /* * protect plaintext rtcp, then compare with srtcp ciphertext */ len = 24; status = srtp_protect_rtcp(srtp_snd, rtcp_plaintext, &len); if (status || (len != 44)) { return srtp_err_status_fail; } debug_print(mod_driver, "srtcp ciphertext:\n %s", octet_string_hex_string(rtcp_plaintext, len)); debug_print(mod_driver, "srtcp ciphertext reference:\n %s", octet_string_hex_string(srtcp_ciphertext, len)); if (srtp_octet_string_is_eq(rtcp_plaintext, srtcp_ciphertext, len)) { return srtp_err_status_fail; } /* * create a receiver session context comparable to the one created * above - we need to do this so that the replay checking doesn't * complain */ status = srtp_create(&srtp_recv, &policy); if (status) { return status; } /* * unprotect srtp ciphertext, then compare with rtp plaintext */ len = 44; status = srtp_unprotect(srtp_recv, srtp_ciphertext, &len); if (status || (len != 28)) { return status; } if (srtp_octet_string_is_eq(srtp_ciphertext, rtp_plaintext_ref, len)) { return srtp_err_status_fail; } /* * unprotect srtcp ciphertext, then compare with rtcp plaintext */ len = 44; status = srtp_unprotect_rtcp(srtp_recv, srtcp_ciphertext, &len); if (status || (len != 24)) { return status; } if (srtp_octet_string_is_eq(srtcp_ciphertext, rtcp_plaintext_ref, len)) { return srtp_err_status_fail; } status = srtp_dealloc(srtp_snd); if (status) { return status; } status = srtp_dealloc(srtp_recv); if (status) { return status; } return srtp_err_status_ok; } #endif /* * Test vectors taken from RFC 6904, Appendix A */ srtp_err_status_t srtp_validate_encrypted_extensions_headers() { // clang-format off unsigned char test_key_ext_headers[30] = { 0xe1, 0xf9, 0x7a, 0x0d, 0x3e, 0x01, 0x8b, 0xe0, 0xd6, 0x4f, 0xa3, 0x2c, 0x06, 0xde, 0x41, 0x39, 0x0e, 0xc6, 0x75, 0xad, 0x49, 0x8a, 0xfe, 0xeb, 0xb6, 0x96, 0x0b, 0x3a, 0xab, 0xe6 }; uint8_t srtp_plaintext_ref[56] = { 0x90, 0x0f, 0x12, 0x34, 0xde, 0xca, 0xfb, 0xad, 0xca, 0xfe, 0xba, 0xbe, 0xBE, 0xDE, 0x00, 0x06, 0x17, 0x41, 0x42, 0x73, 0xA4, 0x75, 0x26, 0x27, 0x48, 0x22, 0x00, 0x00, 0xC8, 0x30, 0x8E, 0x46, 0x55, 0x99, 0x63, 0x86, 0xB3, 0x95, 0xFB, 0x00, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab }; uint8_t srtp_plaintext[66] = { 0x90, 0x0f, 0x12, 0x34, 0xde, 0xca, 0xfb, 0xad, 0xca, 0xfe, 0xba, 0xbe, 0xBE, 0xDE, 0x00, 0x06, 0x17, 0x41, 0x42, 0x73, 0xA4, 0x75, 0x26, 0x27, 0x48, 0x22, 0x00, 0x00, 0xC8, 0x30, 0x8E, 0x46, 0x55, 0x99, 0x63, 0x86, 0xB3, 0x95, 0xFB, 0x00, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t srtp_ciphertext[66] = { 0x90, 0x0f, 0x12, 0x34, 0xde, 0xca, 0xfb, 0xad, 0xca, 0xfe, 0xba, 0xbe, 0xBE, 0xDE, 0x00, 0x06, 0x17, 0x58, 0x8A, 0x92, 0x70, 0xF4, 0xE1, 0x5E, 0x1C, 0x22, 0x00, 0x00, 0xC8, 0x30, 0x95, 0x46, 0xA9, 0x94, 0xF0, 0xBC, 0x54, 0x78, 0x97, 0x00, 0x4e, 0x55, 0xdc, 0x4c, 0xe7, 0x99, 0x78, 0xd8, 0x8c, 0xa4, 0xd2, 0x15, 0x94, 0x9d, 0x24, 0x02, 0x5a, 0x46, 0xb3, 0xca, 0x35, 0xc5, 0x35, 0xa8, 0x91, 0xc7 }; // clang-format on srtp_t srtp_snd, srtp_recv; srtp_err_status_t status; int len; srtp_policy_t policy; int headers[3] = { 1, 3, 4 }; /* * create a session with a single stream using the default srtp * policy and with the SSRC value 0xcafebabe */ memset(&policy, 0, sizeof(policy)); srtp_crypto_policy_set_rtp_default(&policy.rtp); srtp_crypto_policy_set_rtcp_default(&policy.rtcp); policy.ssrc.type = ssrc_specific; policy.ssrc.value = 0xcafebabe; policy.key = test_key_ext_headers; policy.ekt = NULL; policy.window_size = 128; policy.allow_repeat_tx = 0; policy.enc_xtn_hdr = headers; policy.enc_xtn_hdr_count = sizeof(headers) / sizeof(headers[0]); policy.next = NULL; status = srtp_create(&srtp_snd, &policy); if (status) return status; /* * protect plaintext, then compare with ciphertext */ len = sizeof(srtp_plaintext_ref); status = srtp_protect(srtp_snd, srtp_plaintext, &len); if (status || (len != sizeof(srtp_plaintext))) return srtp_err_status_fail; debug_print(mod_driver, "ciphertext:\n %s", srtp_octet_string_hex_string(srtp_plaintext, len)); debug_print(mod_driver, "ciphertext reference:\n %s", srtp_octet_string_hex_string(srtp_ciphertext, len)); if (srtp_octet_string_is_eq(srtp_plaintext, srtp_ciphertext, len)) return srtp_err_status_fail; /* * create a receiver session context comparable to the one created * above - we need to do this so that the replay checking doesn't * complain */ status = srtp_create(&srtp_recv, &policy); if (status) return status; /* * unprotect ciphertext, then compare with plaintext */ status = srtp_unprotect(srtp_recv, srtp_ciphertext, &len); if (status) { return status; } else if (len != sizeof(srtp_plaintext_ref)) { return srtp_err_status_fail; } if (srtp_octet_string_is_eq(srtp_ciphertext, srtp_plaintext_ref, len)) return srtp_err_status_fail; status = srtp_dealloc(srtp_snd); if (status) return status; status = srtp_dealloc(srtp_recv); if (status) return status; return srtp_err_status_ok; } #ifdef GCM /* * Headers of test vectors taken from RFC 6904, Appendix A */ srtp_err_status_t srtp_validate_encrypted_extensions_headers_gcm() { // clang-format off unsigned char test_key_ext_headers[30] = { 0xe1, 0xf9, 0x7a, 0x0d, 0x3e, 0x01, 0x8b, 0xe0, 0xd6, 0x4f, 0xa3, 0x2c, 0x06, 0xde, 0x41, 0x39, 0x0e, 0xc6, 0x75, 0xad, 0x49, 0x8a, 0xfe, 0xeb, 0xb6, 0x96, 0x0b, 0x3a, 0xab, 0xe6 }; uint8_t srtp_plaintext_ref[56] = { 0x90, 0x0f, 0x12, 0x34, 0xde, 0xca, 0xfb, 0xad, 0xca, 0xfe, 0xba, 0xbe, 0xBE, 0xDE, 0x00, 0x06, 0x17, 0x41, 0x42, 0x73, 0xA4, 0x75, 0x26, 0x27, 0x48, 0x22, 0x00, 0x00, 0xC8, 0x30, 0x8E, 0x46, 0x55, 0x99, 0x63, 0x86, 0xB3, 0x95, 0xFB, 0x00, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab }; uint8_t srtp_plaintext[64] = { 0x90, 0x0f, 0x12, 0x34, 0xde, 0xca, 0xfb, 0xad, 0xca, 0xfe, 0xba, 0xbe, 0xBE, 0xDE, 0x00, 0x06, 0x17, 0x41, 0x42, 0x73, 0xA4, 0x75, 0x26, 0x27, 0x48, 0x22, 0x00, 0x00, 0xC8, 0x30, 0x8E, 0x46, 0x55, 0x99, 0x63, 0x86, 0xB3, 0x95, 0xFB, 0x00, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t srtp_ciphertext[64] = { 0x90, 0x0f, 0x12, 0x34, 0xde, 0xca, 0xfb, 0xad, 0xca, 0xfe, 0xba, 0xbe, 0xBE, 0xDE, 0x00, 0x06, 0x17, 0x12, 0xe0, 0x20, 0x5b, 0xfa, 0x94, 0x9b, 0x1C, 0x22, 0x00, 0x00, 0xC8, 0x30, 0xbb, 0x46, 0x73, 0x27, 0x78, 0xd9, 0x92, 0x9a, 0xab, 0x00, 0x0e, 0xca, 0x0c, 0xf9, 0x5e, 0xe9, 0x55, 0xb2, 0x6c, 0xd3, 0xd2, 0x88, 0xb4, 0x9f, 0x6c, 0xa9, 0xf4, 0xb1, 0xb7, 0x59, 0x71, 0x9e, 0xb5, 0xbc }; // clang-format on srtp_t srtp_snd, srtp_recv; srtp_err_status_t status; int len; srtp_policy_t policy; int headers[3] = { 1, 3, 4 }; /* * create a session with a single stream using the default srtp * policy and with the SSRC value 0xcafebabe */ memset(&policy, 0, sizeof(policy)); srtp_crypto_policy_set_aes_gcm_128_8_auth(&policy.rtp); srtp_crypto_policy_set_aes_gcm_128_8_auth(&policy.rtcp); policy.ssrc.type = ssrc_specific; policy.ssrc.value = 0xcafebabe; policy.key = test_key_ext_headers; policy.ekt = NULL; policy.window_size = 128; policy.allow_repeat_tx = 0; policy.enc_xtn_hdr = headers; policy.enc_xtn_hdr_count = sizeof(headers) / sizeof(headers[0]); policy.next = NULL; status = srtp_create(&srtp_snd, &policy); if (status) return status; /* * protect plaintext, then compare with ciphertext */ len = sizeof(srtp_plaintext_ref); status = srtp_protect(srtp_snd, srtp_plaintext, &len); if (status || (len != sizeof(srtp_plaintext))) return srtp_err_status_fail; debug_print(mod_driver, "ciphertext:\n %s", srtp_octet_string_hex_string(srtp_plaintext, len)); debug_print(mod_driver, "ciphertext reference:\n %s", srtp_octet_string_hex_string(srtp_ciphertext, len)); if (srtp_octet_string_is_eq(srtp_plaintext, srtp_ciphertext, len)) return srtp_err_status_fail; /* * create a receiver session context comparable to the one created * above - we need to do this so that the replay checking doesn't * complain */ status = srtp_create(&srtp_recv, &policy); if (status) return status; /* * unprotect ciphertext, then compare with plaintext */ status = srtp_unprotect(srtp_recv, srtp_ciphertext, &len); if (status) { return status; } else if (len != sizeof(srtp_plaintext_ref)) { return srtp_err_status_fail; } if (srtp_octet_string_is_eq(srtp_ciphertext, srtp_plaintext_ref, len)) return srtp_err_status_fail; status = srtp_dealloc(srtp_snd); if (status) return status; status = srtp_dealloc(srtp_recv); if (status) return status; return srtp_err_status_ok; } #endif /* * srtp_validate_aes_256() verifies the correctness of libsrtp by comparing * some computed packets against some pre-computed reference values. * These packets were made with the AES-CM-256/HMAC-SHA-1-80 policy. */ srtp_err_status_t srtp_validate_aes_256() { // clang-format off unsigned char aes_256_test_key[46] = { 0xf0, 0xf0, 0x49, 0x14, 0xb5, 0x13, 0xf2, 0x76, 0x3a, 0x1b, 0x1f, 0xa1, 0x30, 0xf1, 0x0e, 0x29, 0x98, 0xf6, 0xf6, 0xe4, 0x3e, 0x43, 0x09, 0xd1, 0xe6, 0x22, 0xa0, 0xe3, 0x32, 0xb9, 0xf1, 0xb6, 0x3b, 0x04, 0x80, 0x3d, 0xe5, 0x1e, 0xe7, 0xc9, 0x64, 0x23, 0xab, 0x5b, 0x78, 0xd2 }; uint8_t srtp_plaintext_ref[28] = { 0x80, 0x0f, 0x12, 0x34, 0xde, 0xca, 0xfb, 0xad, 0xca, 0xfe, 0xba, 0xbe, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab }; uint8_t srtp_plaintext[38] = { 0x80, 0x0f, 0x12, 0x34, 0xde, 0xca, 0xfb, 0xad, 0xca, 0xfe, 0xba, 0xbe, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t srtp_ciphertext[38] = { 0x80, 0x0f, 0x12, 0x34, 0xde, 0xca, 0xfb, 0xad, 0xca, 0xfe, 0xba, 0xbe, 0xf1, 0xd9, 0xde, 0x17, 0xff, 0x25, 0x1f, 0xf1, 0xaa, 0x00, 0x77, 0x74, 0xb0, 0xb4, 0xb4, 0x0d, 0xa0, 0x8d, 0x9d, 0x9a, 0x5b, 0x3a, 0x55, 0xd8, 0x87, 0x3b }; // clang-format on srtp_t srtp_snd, srtp_recv; srtp_err_status_t status; int len; srtp_policy_t policy; /* * create a session with a single stream using the default srtp * policy and with the SSRC value 0xcafebabe */ memset(&policy, 0, sizeof(policy)); srtp_crypto_policy_set_aes_cm_256_hmac_sha1_80(&policy.rtp); srtp_crypto_policy_set_aes_cm_256_hmac_sha1_80(&policy.rtcp); policy.ssrc.type = ssrc_specific; policy.ssrc.value = 0xcafebabe; policy.key = aes_256_test_key; policy.ekt = NULL; policy.window_size = 128; policy.allow_repeat_tx = 0; policy.next = NULL; status = srtp_create(&srtp_snd, &policy); if (status) { return status; } /* * protect plaintext, then compare with ciphertext */ len = 28; status = srtp_protect(srtp_snd, srtp_plaintext, &len); if (status || (len != 38)) { return srtp_err_status_fail; } debug_print(mod_driver, "ciphertext:\n %s", octet_string_hex_string(srtp_plaintext, len)); debug_print(mod_driver, "ciphertext reference:\n %s", octet_string_hex_string(srtp_ciphertext, len)); if (srtp_octet_string_is_eq(srtp_plaintext, srtp_ciphertext, len)) { return srtp_err_status_fail; } /* * create a receiver session context comparable to the one created * above - we need to do this so that the replay checking doesn't * complain */ status = srtp_create(&srtp_recv, &policy); if (status) { return status; } /* * unprotect ciphertext, then compare with plaintext */ status = srtp_unprotect(srtp_recv, srtp_ciphertext, &len); if (status || (len != 28)) { return status; } if (srtp_octet_string_is_eq(srtp_ciphertext, srtp_plaintext_ref, len)) { return srtp_err_status_fail; } status = srtp_dealloc(srtp_snd); if (status) { return status; } status = srtp_dealloc(srtp_recv); if (status) { return status; } return srtp_err_status_ok; } srtp_err_status_t srtp_create_big_policy(srtp_policy_t **list) { extern const srtp_policy_t *policy_array[]; srtp_policy_t *p, *tmp; int i = 0; uint32_t ssrc = 0; /* sanity checking */ if ((list == NULL) || (policy_array[0] == NULL)) { return srtp_err_status_bad_param; } /* * loop over policy list, mallocing a new list and copying values * into it (and incrementing the SSRC value as we go along) */ tmp = NULL; while (policy_array[i] != NULL) { p = (srtp_policy_t *)malloc(sizeof(srtp_policy_t)); if (p == NULL) { return srtp_err_status_bad_param; } memcpy(p, policy_array[i], sizeof(srtp_policy_t)); p->ssrc.type = ssrc_specific; p->ssrc.value = ssrc++; p->next = tmp; tmp = p; i++; } *list = p; return srtp_err_status_ok; } srtp_err_status_t srtp_dealloc_big_policy(srtp_policy_t *list) { srtp_policy_t *p, *next; for (p = list; p != NULL; p = next) { next = p->next; free(p); } return srtp_err_status_ok; } srtp_err_status_t srtp_test_empty_payload() { srtp_t srtp_snd, srtp_recv; srtp_err_status_t status; int len; srtp_policy_t policy; srtp_hdr_t *mesg; /* * create a session with a single stream using the default srtp * policy and with the SSRC value 0xcafebabe */ memset(&policy, 0, sizeof(policy)); srtp_crypto_policy_set_rtp_default(&policy.rtp); srtp_crypto_policy_set_rtcp_default(&policy.rtcp); policy.ssrc.type = ssrc_specific; policy.ssrc.value = 0xcafebabe; policy.key = test_key; policy.ekt = NULL; policy.window_size = 128; policy.allow_repeat_tx = 0; policy.next = NULL; status = srtp_create(&srtp_snd, &policy); if (status) { return status; } mesg = srtp_create_test_packet(0, policy.ssrc.value, &len); if (mesg == NULL) { return srtp_err_status_fail; } status = srtp_protect(srtp_snd, mesg, &len); if (status) { return status; } else if (len != 12 + 10) { return srtp_err_status_fail; } /* * create a receiver session context comparable to the one created * above - we need to do this so that the replay checking doesn't * complain */ status = srtp_create(&srtp_recv, &policy); if (status) { return status; } /* * unprotect ciphertext, then compare with plaintext */ status = srtp_unprotect(srtp_recv, mesg, &len); if (status) { return status; } else if (len != 12) { return srtp_err_status_fail; } status = srtp_dealloc(srtp_snd); if (status) { return status; } status = srtp_dealloc(srtp_recv); if (status) { return status; } free(mesg); return srtp_err_status_ok; } #ifdef GCM srtp_err_status_t srtp_test_empty_payload_gcm() { srtp_t srtp_snd, srtp_recv; srtp_err_status_t status; int len; srtp_policy_t policy; srtp_hdr_t *mesg; /* * create a session with a single stream using the default srtp * policy and with the SSRC value 0xcafebabe */ memset(&policy, 0, sizeof(policy)); srtp_crypto_policy_set_aes_gcm_128_8_auth(&policy.rtp); srtp_crypto_policy_set_aes_gcm_128_8_auth(&policy.rtcp); policy.ssrc.type = ssrc_specific; policy.ssrc.value = 0xcafebabe; policy.key = test_key; policy.ekt = NULL; policy.window_size = 128; policy.allow_repeat_tx = 0; policy.next = NULL; status = srtp_create(&srtp_snd, &policy); if (status) { return status; } mesg = srtp_create_test_packet(0, policy.ssrc.value, &len); if (mesg == NULL) { return srtp_err_status_fail; } status = srtp_protect(srtp_snd, mesg, &len); if (status) { return status; } else if (len != 12 + 8) { return srtp_err_status_fail; } /* * create a receiver session context comparable to the one created * above - we need to do this so that the replay checking doesn't * complain */ status = srtp_create(&srtp_recv, &policy); if (status) { return status; } /* * unprotect ciphertext, then compare with plaintext */ status = srtp_unprotect(srtp_recv, mesg, &len); if (status) { return status; } else if (len != 12) { return srtp_err_status_fail; } status = srtp_dealloc(srtp_snd); if (status) { return status; } status = srtp_dealloc(srtp_recv); if (status) { return status; } free(mesg); return srtp_err_status_ok; } #endif // GCM srtp_err_status_t srtp_test_remove_stream() { srtp_err_status_t status; srtp_policy_t *policy_list, policy; srtp_t session; srtp_stream_t stream; /* * srtp_get_stream() is a libSRTP internal function that we declare * here so that we can use it to verify the correct operation of the * library */ extern srtp_stream_t srtp_get_stream(srtp_t srtp, uint32_t ssrc); status = srtp_create_big_policy(&policy_list); if (status) { return status; } status = srtp_create(&session, policy_list); if (status) { return status; } /* * check for false positives by trying to remove a stream that's not * in the session */ status = srtp_remove_stream(session, htonl(0xaaaaaaaa)); if (status != srtp_err_status_no_ctx) { return srtp_err_status_fail; } /* * check for false negatives by removing stream 0x1, then * searching for streams 0x0 and 0x2 */ status = srtp_remove_stream(session, htonl(0x1)); if (status != srtp_err_status_ok) { return srtp_err_status_fail; } stream = srtp_get_stream(session, htonl(0x0)); if (stream == NULL) { return srtp_err_status_fail; } stream = srtp_get_stream(session, htonl(0x2)); if (stream == NULL) { return srtp_err_status_fail; } status = srtp_dealloc(session); if (status != srtp_err_status_ok) { return status; } status = srtp_dealloc_big_policy(policy_list); if (status != srtp_err_status_ok) { return status; } /* Now test adding and removing a single stream */ memset(&policy, 0, sizeof(policy)); srtp_crypto_policy_set_rtp_default(&policy.rtp); srtp_crypto_policy_set_rtcp_default(&policy.rtcp); policy.ssrc.type = ssrc_specific; policy.ssrc.value = 0xcafebabe; policy.key = test_key; policy.ekt = NULL; policy.window_size = 128; policy.allow_repeat_tx = 0; policy.next = NULL; status = srtp_create(&session, NULL); if (status != srtp_err_status_ok) { return status; } status = srtp_add_stream(session, &policy); if (status != srtp_err_status_ok) { return status; } status = srtp_remove_stream(session, htonl(0xcafebabe)); if (status != srtp_err_status_ok) { return status; } status = srtp_dealloc(session); if (status != srtp_err_status_ok) { return status; } return srtp_err_status_ok; } // clang-format off unsigned char test_alt_key[46] = { 0xe5, 0x19, 0x6f, 0x01, 0x5e, 0xf1, 0x9b, 0xe1, 0xd7, 0x47, 0xa7, 0x27, 0x07, 0xd7, 0x47, 0x33, 0x01, 0xc2, 0x35, 0x4d, 0x59, 0x6a, 0xf7, 0x84, 0x96, 0x98, 0xeb, 0xaa, 0xac, 0xf6, 0xa1, 0x45, 0xc7, 0x15, 0xe2, 0xea, 0xfe, 0x55, 0x67, 0x96, 0xb6, 0x96, 0x0b, 0x3a, 0xab, 0xe6 }; // clang-format on /* * srtp_test_update() verifies updating/rekeying exsisting streams. * As stated in https://tools.ietf.org/html/rfc3711#section-3.3.1 * the value of the ROC must not be reset after a rekey, this test * atempts to prove that srtp_update does not reset the ROC. */ srtp_err_status_t srtp_test_update() { srtp_err_status_t status; uint32_t ssrc = 0x12121212; int msg_len_octets = 32; int protected_msg_len_octets; srtp_hdr_t *msg; srtp_t srtp_snd, srtp_recv; srtp_policy_t policy; memset(&policy, 0, sizeof(policy)); srtp_crypto_policy_set_rtp_default(&policy.rtp); srtp_crypto_policy_set_rtcp_default(&policy.rtcp); policy.ekt = NULL; policy.window_size = 128; policy.allow_repeat_tx = 0; policy.next = NULL; policy.ssrc.type = ssrc_any_outbound; policy.key = test_key; /* create a send and recive ctx with defualt profile and test_key */ status = srtp_create(&srtp_recv, &policy); if (status) return status; policy.ssrc.type = ssrc_any_inbound; status = srtp_create(&srtp_snd, &policy); if (status) return status; /* protect and unprotect two msg's that will cause the ROC to be equal to 1 */ msg = srtp_create_test_packet(msg_len_octets, ssrc, &protected_msg_len_octets); if (msg == NULL) return srtp_err_status_alloc_fail; msg->seq = htons(65535); status = srtp_protect(srtp_snd, msg, &protected_msg_len_octets); if (status) return srtp_err_status_fail; status = srtp_unprotect(srtp_recv, msg, &protected_msg_len_octets); if (status) return status; free(msg); msg = srtp_create_test_packet(msg_len_octets, ssrc, &protected_msg_len_octets); if (msg == NULL) return srtp_err_status_alloc_fail; msg->seq = htons(1); status = srtp_protect(srtp_snd, msg, &protected_msg_len_octets); if (status) return srtp_err_status_fail; status = srtp_unprotect(srtp_recv, msg, &protected_msg_len_octets); if (status) return status; free(msg); /* update send ctx with same test_key t verify update works*/ policy.ssrc.type = ssrc_any_outbound; policy.key = test_key; status = srtp_update(srtp_snd, &policy); if (status) return status; msg = srtp_create_test_packet(msg_len_octets, ssrc, &protected_msg_len_octets); if (msg == NULL) return srtp_err_status_alloc_fail; msg->seq = htons(2); status = srtp_protect(srtp_snd, msg, &protected_msg_len_octets); if (status) return srtp_err_status_fail; status = srtp_unprotect(srtp_recv, msg, &protected_msg_len_octets); if (status) return status; free(msg); /* update send ctx to use test_alt_key */ policy.ssrc.type = ssrc_any_outbound; policy.key = test_alt_key; status = srtp_update(srtp_snd, &policy); if (status) return status; /* create and protect msg with new key and ROC still equal to 1 */ msg = srtp_create_test_packet(msg_len_octets, ssrc, &protected_msg_len_octets); if (msg == NULL) return srtp_err_status_alloc_fail; msg->seq = htons(3); status = srtp_protect(srtp_snd, msg, &protected_msg_len_octets); if (status) return srtp_err_status_fail; /* verify that recive ctx will fail to unprotect as it still uses test_key */ status = srtp_unprotect(srtp_recv, msg, &protected_msg_len_octets); if (status == srtp_err_status_ok) return srtp_err_status_fail; /* create a new recvieve ctx with test_alt_key but since it is new it will * have ROC equal to 1 * and therefore should fail to unprotected */ { srtp_t srtp_recv_roc_0; policy.ssrc.type = ssrc_any_inbound; policy.key = test_alt_key; status = srtp_create(&srtp_recv_roc_0, &policy); if (status) return status; status = srtp_unprotect(srtp_recv_roc_0, msg, &protected_msg_len_octets); if (status == srtp_err_status_ok) return srtp_err_status_fail; status = srtp_dealloc(srtp_recv_roc_0); if (status) return status; } /* update recive ctx to use test_alt_key */ policy.ssrc.type = ssrc_any_inbound; policy.key = test_alt_key; status = srtp_update(srtp_recv, &policy); if (status) return status; /* verify that can still unprotect, therfore key is updated and ROC value is * preserved */ status = srtp_unprotect(srtp_recv, msg, &protected_msg_len_octets); if (status) return status; free(msg); status = srtp_dealloc(srtp_snd); if (status) return status; status = srtp_dealloc(srtp_recv); if (status) return status; return srtp_err_status_ok; } srtp_err_status_t srtp_test_setup_protect_trailer_streams( srtp_t *srtp_send, srtp_t *srtp_send_mki, srtp_t *srtp_send_aes_gcm, srtp_t *srtp_send_aes_gcm_mki) { srtp_err_status_t status; srtp_policy_t policy; srtp_policy_t policy_mki; #ifdef GCM srtp_policy_t policy_aes_gcm; srtp_policy_t policy_aes_gcm_mki; #endif // GCM memset(&policy, 0, sizeof(policy)); srtp_crypto_policy_set_rtp_default(&policy.rtp); srtp_crypto_policy_set_rtcp_default(&policy.rtcp); policy.ekt = NULL; policy.window_size = 128; policy.allow_repeat_tx = 0; policy.next = NULL; policy.ssrc.type = ssrc_any_outbound; policy.key = test_key; memset(&policy_mki, 0, sizeof(policy_mki)); srtp_crypto_policy_set_rtp_default(&policy_mki.rtp); srtp_crypto_policy_set_rtcp_default(&policy_mki.rtcp); policy_mki.ekt = NULL; policy_mki.window_size = 128; policy_mki.allow_repeat_tx = 0; policy_mki.next = NULL; policy_mki.ssrc.type = ssrc_any_outbound; policy_mki.key = NULL; policy_mki.keys = test_keys; policy_mki.num_master_keys = 2; #ifdef GCM memset(&policy_aes_gcm, 0, sizeof(policy_aes_gcm)); srtp_crypto_policy_set_aes_gcm_128_16_auth(&policy_aes_gcm.rtp); srtp_crypto_policy_set_aes_gcm_128_16_auth(&policy_aes_gcm.rtcp); policy_aes_gcm.ekt = NULL; policy_aes_gcm.window_size = 128; policy_aes_gcm.allow_repeat_tx = 0; policy_aes_gcm.next = NULL; policy_aes_gcm.ssrc.type = ssrc_any_outbound; policy_aes_gcm.key = test_key; memset(&policy_aes_gcm_mki, 0, sizeof(policy_aes_gcm_mki)); srtp_crypto_policy_set_aes_gcm_128_16_auth(&policy_aes_gcm_mki.rtp); srtp_crypto_policy_set_aes_gcm_128_16_auth(&policy_aes_gcm_mki.rtcp); policy_aes_gcm_mki.ekt = NULL; policy_aes_gcm_mki.window_size = 128; policy_aes_gcm_mki.allow_repeat_tx = 0; policy_aes_gcm_mki.next = NULL; policy_aes_gcm_mki.ssrc.type = ssrc_any_outbound; policy_aes_gcm_mki.key = NULL; policy_aes_gcm_mki.keys = test_keys; policy_aes_gcm_mki.num_master_keys = 2; #endif // GCM /* create a send ctx with defualt profile and test_key */ status = srtp_create(srtp_send, &policy); if (status) return status; status = srtp_create(srtp_send_mki, &policy_mki); if (status) return status; #ifdef GCM status = srtp_create(srtp_send_aes_gcm, &policy_aes_gcm); if (status) return status; status = srtp_create(srtp_send_aes_gcm_mki, &policy_aes_gcm_mki); if (status) return status; #endif // GCM return srtp_err_status_ok; } srtp_err_status_t srtp_test_protect_trailer_length() { srtp_t srtp_send; srtp_t srtp_send_mki; srtp_t srtp_send_aes_gcm; srtp_t srtp_send_aes_gcm_mki; uint32_t length = 0; srtp_err_status_t status; srtp_test_setup_protect_trailer_streams( &srtp_send, &srtp_send_mki, &srtp_send_aes_gcm, &srtp_send_aes_gcm_mki); status = srtp_get_protect_trailer_length(srtp_send, 0, 0, &length); if (status) return status; /* TAG Length: 10 bytes */ if (length != 10) return srtp_err_status_fail; status = srtp_get_protect_trailer_length(srtp_send_mki, 1, 1, &length); if (status) return status; /* TAG Length: 10 bytes + MKI length: 4 bytes*/ if (length != 14) return srtp_err_status_fail; #ifdef GCM status = srtp_get_protect_trailer_length(srtp_send_aes_gcm, 0, 0, &length); if (status) return status; /* TAG Length: 16 bytes */ if (length != 16) return srtp_err_status_fail; status = srtp_get_protect_trailer_length(srtp_send_aes_gcm_mki, 1, 1, &length); if (status) return status; /* TAG Length: 16 bytes + MKI length: 4 bytes*/ if (length != 20) return srtp_err_status_fail; #endif // GCM srtp_dealloc(srtp_send); srtp_dealloc(srtp_send_mki); #ifdef GCM srtp_dealloc(srtp_send_aes_gcm); srtp_dealloc(srtp_send_aes_gcm_mki); #endif return srtp_err_status_ok; } srtp_err_status_t srtp_test_protect_rtcp_trailer_length() { srtp_t srtp_send; srtp_t srtp_send_mki; srtp_t srtp_send_aes_gcm; srtp_t srtp_send_aes_gcm_mki; uint32_t length = 0; srtp_err_status_t status; srtp_test_setup_protect_trailer_streams( &srtp_send, &srtp_send_mki, &srtp_send_aes_gcm, &srtp_send_aes_gcm_mki); status = srtp_get_protect_rtcp_trailer_length(srtp_send, 0, 0, &length); if (status) return status; /* TAG Length: 10 bytes + SRTCP Trailer 4 bytes*/ if (length != 14) return srtp_err_status_fail; status = srtp_get_protect_rtcp_trailer_length(srtp_send_mki, 1, 1, &length); if (status) return status; /* TAG Length: 10 bytes + SRTCP Trailer 4 bytes + MKI 4 bytes*/ if (length != 18) return srtp_err_status_fail; #ifdef GCM status = srtp_get_protect_rtcp_trailer_length(srtp_send_aes_gcm, 0, 0, &length); if (status) return status; /* TAG Length: 16 bytes + SRTCP Trailer 4 bytes*/ if (length != 20) return srtp_err_status_fail; status = srtp_get_protect_rtcp_trailer_length(srtp_send_aes_gcm_mki, 1, 1, &length); if (status) return status; /* TAG Length: 16 bytes + SRTCP Trailer 4 bytes + MKI 4 bytes*/ if (length != 24) return srtp_err_status_fail; #endif // GCM srtp_dealloc(srtp_send); srtp_dealloc(srtp_send_mki); #ifdef GCM srtp_dealloc(srtp_send_aes_gcm); srtp_dealloc(srtp_send_aes_gcm_mki); #endif return srtp_err_status_ok; } srtp_err_status_t srtp_test_get_roc() { srtp_err_status_t status; srtp_policy_t policy; srtp_t session; srtp_hdr_t *pkt; uint32_t i; uint32_t roc; uint32_t ts; uint16_t seq; int msg_len_octets = 32; int protected_msg_len_octets; memset(&policy, 0, sizeof(policy)); srtp_crypto_policy_set_rtp_default(&policy.rtp); srtp_crypto_policy_set_rtcp_default(&policy.rtcp); policy.ssrc.type = ssrc_specific; policy.ssrc.value = 0xcafebabe; policy.key = test_key; policy.window_size = 128; /* Create a sender session */ status = srtp_create(&session, &policy); if (status) { return status; } /* Set start sequence so we roll over */ seq = 65535; ts = 0; for (i = 0; i < 2; i++) { pkt = srtp_create_test_packet_extended(msg_len_octets, policy.ssrc.value, seq, ts, &protected_msg_len_octets); status = srtp_protect(session, pkt, &protected_msg_len_octets); free(pkt); if (status) { return status; } status = srtp_get_stream_roc(session, policy.ssrc.value, &roc); if (status) { return status; } if (roc != i) { return srtp_err_status_fail; } seq++; ts++; } /* Cleanup */ status = srtp_dealloc(session); if (status) { return status; } return srtp_err_status_ok; } static srtp_err_status_t test_set_receiver_roc(uint32_t packets, uint32_t roc_to_set) { srtp_err_status_t status; srtp_policy_t sender_policy; srtp_t sender_session; srtp_policy_t receiver_policy; srtp_t receiver_session; srtp_hdr_t *pkt_1; unsigned char *recv_pkt_1; srtp_hdr_t *pkt_2; unsigned char *recv_pkt_2; uint32_t i; uint32_t ts; uint16_t seq; int msg_len_octets = 32; int protected_msg_len_octets_1; int protected_msg_len_octets_2; /* Create sender */ memset(&sender_policy, 0, sizeof(sender_policy)); srtp_crypto_policy_set_rtp_default(&sender_policy.rtp); srtp_crypto_policy_set_rtcp_default(&sender_policy.rtcp); sender_policy.ssrc.type = ssrc_specific; sender_policy.ssrc.value = 0xcafebabe; sender_policy.key = test_key; sender_policy.window_size = 128; status = srtp_create(&sender_session, &sender_policy); if (status) { return status; } /* Create and protect packets */ seq = 0; ts = 0; for (i = 0; i < packets; i++) { srtp_hdr_t *tmp_pkt; int tmp_len; tmp_pkt = srtp_create_test_packet_extended( msg_len_octets, sender_policy.ssrc.value, seq, ts, &tmp_len); status = srtp_protect(sender_session, tmp_pkt, &tmp_len); free(tmp_pkt); if (status) { return status; } seq++; ts++; } /* Create the first packet to decrypt and test for ROC change */ pkt_1 = srtp_create_test_packet_extended(msg_len_octets, sender_policy.ssrc.value, seq, ts, &protected_msg_len_octets_1); status = srtp_protect(sender_session, pkt_1, &protected_msg_len_octets_1); if (status) { return status; } /* Create the second packet to decrypt and test for ROC change */ seq++; ts++; pkt_2 = srtp_create_test_packet_extended(msg_len_octets, sender_policy.ssrc.value, seq, ts, &protected_msg_len_octets_2); status = srtp_protect(sender_session, pkt_2, &protected_msg_len_octets_2); if (status) { return status; } /* Create the receiver */ memset(&receiver_policy, 0, sizeof(receiver_policy)); srtp_crypto_policy_set_rtp_default(&receiver_policy.rtp); srtp_crypto_policy_set_rtcp_default(&receiver_policy.rtcp); receiver_policy.ssrc.type = ssrc_specific; receiver_policy.ssrc.value = sender_policy.ssrc.value; receiver_policy.key = test_key; receiver_policy.window_size = 128; status = srtp_create(&receiver_session, &receiver_policy); if (status) { return status; } /* Make a copy of the first sent protected packet */ recv_pkt_1 = malloc(protected_msg_len_octets_1); if (recv_pkt_1 == NULL) { return srtp_err_status_fail; } memcpy(recv_pkt_1, pkt_1, protected_msg_len_octets_1); /* Make a copy of the second sent protected packet */ recv_pkt_2 = malloc(protected_msg_len_octets_2); if (recv_pkt_2 == NULL) { return srtp_err_status_fail; } memcpy(recv_pkt_2, pkt_2, protected_msg_len_octets_2); /* Set the ROC to the wanted value */ status = srtp_set_stream_roc(receiver_session, receiver_policy.ssrc.value, roc_to_set); if (status) { return status; } /* Unprotect the first packet */ status = srtp_unprotect(receiver_session, recv_pkt_1, &protected_msg_len_octets_1); if (status) { return status; } /* Unprotect the second packet */ status = srtp_unprotect(receiver_session, recv_pkt_2, &protected_msg_len_octets_2); if (status) { return status; } /* Cleanup */ status = srtp_dealloc(sender_session); if (status) { return status; } status = srtp_dealloc(receiver_session); if (status) { return status; } free(pkt_1); free(recv_pkt_1); free(pkt_2); free(recv_pkt_2); return srtp_err_status_ok; } static srtp_err_status_t test_set_sender_roc(uint16_t seq, uint32_t roc_to_set) { srtp_err_status_t status; srtp_policy_t sender_policy; srtp_t sender_session; srtp_policy_t receiver_policy; srtp_t receiver_session; srtp_hdr_t *pkt; unsigned char *recv_pkt; uint32_t ts; int msg_len_octets = 32; int protected_msg_len_octets; /* Create sender */ memset(&sender_policy, 0, sizeof(sender_policy)); srtp_crypto_policy_set_rtp_default(&sender_policy.rtp); srtp_crypto_policy_set_rtcp_default(&sender_policy.rtcp); sender_policy.ssrc.type = ssrc_specific; sender_policy.ssrc.value = 0xcafebabe; sender_policy.key = test_key; sender_policy.window_size = 128; status = srtp_create(&sender_session, &sender_policy); if (status) { return status; } /* Set the ROC before encrypting the first packet */ status = srtp_set_stream_roc(sender_session, sender_policy.ssrc.value, roc_to_set); if (status != srtp_err_status_ok) { return status; } /* Create the packet to decrypt */ ts = 0; pkt = srtp_create_test_packet_extended(msg_len_octets, sender_policy.ssrc.value, seq, ts, &protected_msg_len_octets); status = srtp_protect(sender_session, pkt, &protected_msg_len_octets); if (status) { return status; } /* Create the receiver */ memset(&receiver_policy, 0, sizeof(receiver_policy)); srtp_crypto_policy_set_rtp_default(&receiver_policy.rtp); srtp_crypto_policy_set_rtcp_default(&receiver_policy.rtcp); receiver_policy.ssrc.type = ssrc_specific; receiver_policy.ssrc.value = sender_policy.ssrc.value; receiver_policy.key = test_key; receiver_policy.window_size = 128; status = srtp_create(&receiver_session, &receiver_policy); if (status) { return status; } /* Make a copy of the sent protected packet */ recv_pkt = malloc(protected_msg_len_octets); if (recv_pkt == NULL) { return srtp_err_status_fail; } memcpy(recv_pkt, pkt, protected_msg_len_octets); /* Set the ROC to the wanted value */ status = srtp_set_stream_roc(receiver_session, receiver_policy.ssrc.value, roc_to_set); if (status) { return status; } status = srtp_unprotect(receiver_session, recv_pkt, &protected_msg_len_octets); if (status) { return status; } /* Cleanup */ status = srtp_dealloc(sender_session); if (status) { return status; } status = srtp_dealloc(receiver_session); if (status) { return status; } free(pkt); free(recv_pkt); return srtp_err_status_ok; } srtp_err_status_t srtp_test_set_receiver_roc() { int packets; uint32_t roc; srtp_err_status_t status; /* First test does not rollover */ packets = 1; roc = 0; status = test_set_receiver_roc(packets - 1, roc); if (status) { return status; } status = test_set_receiver_roc(packets, roc); if (status) { return status; } status = test_set_receiver_roc(packets + 1, roc); if (status) { return status; } status = test_set_receiver_roc(packets + 60000, roc); if (status) { return status; } /* Second test should rollover */ packets = 65535; roc = 0; status = test_set_receiver_roc(packets - 1, roc); if (status) { return status; } status = test_set_receiver_roc(packets, roc); if (status) { return status; } /* Now the rollover counter should be 1 */ roc = 1; status = test_set_receiver_roc(packets + 1, roc); if (status) { return status; } status = test_set_receiver_roc(packets + 60000, roc); if (status) { return status; } return srtp_err_status_ok; } srtp_err_status_t srtp_test_set_sender_roc() { uint32_t roc; uint16_t seq; srtp_err_status_t status; seq = 43210; roc = 0; status = test_set_sender_roc(seq, roc); if (status) { return status; } roc = 65535; status = test_set_sender_roc(seq, roc); if (status) { return status; } roc = 0xffff; status = test_set_sender_roc(seq, roc); if (status) { return status; } roc = 0xffff00; status = test_set_sender_roc(seq, roc); if (status) { return status; } roc = 0xfffffff0; status = test_set_sender_roc(seq, roc); if (status) { return status; } return srtp_err_status_ok; } /* * srtp policy definitions - these definitions are used above */ // clang-format off unsigned char test_key[46] = { 0xe1, 0xf9, 0x7a, 0x0d, 0x3e, 0x01, 0x8b, 0xe0, 0xd6, 0x4f, 0xa3, 0x2c, 0x06, 0xde, 0x41, 0x39, 0x0e, 0xc6, 0x75, 0xad, 0x49, 0x8a, 0xfe, 0xeb, 0xb6, 0x96, 0x0b, 0x3a, 0xab, 0xe6, 0xc1, 0x73, 0xc3, 0x17, 0xf2, 0xda, 0xbe, 0x35, 0x77, 0x93, 0xb6, 0x96, 0x0b, 0x3a, 0xab, 0xe6 }; unsigned char test_key_2[46] = { 0xf0, 0xf0, 0x49, 0x14, 0xb5, 0x13, 0xf2, 0x76, 0x3a, 0x1b, 0x1f, 0xa1, 0x30, 0xf1, 0x0e, 0x29, 0x98, 0xf6, 0xf6, 0xe4, 0x3e, 0x43, 0x09, 0xd1, 0xe6, 0x22, 0xa0, 0xe3, 0x32, 0xb9, 0xf1, 0xb6, 0xc3, 0x17, 0xf2, 0xda, 0xbe, 0x35, 0x77, 0x93, 0xb6, 0x96, 0x0b, 0x3a, 0xab, 0xe6 }; unsigned char test_mki_id[TEST_MKI_ID_SIZE] = { 0xe1, 0xf9, 0x7a, 0x0d }; unsigned char test_mki_id_2[TEST_MKI_ID_SIZE] = { 0xf3, 0xa1, 0x46, 0x71 }; // clang-format on const srtp_policy_t default_policy = { { ssrc_any_outbound, 0 }, /* SSRC */ { /* SRTP policy */ SRTP_AES_ICM_128, /* cipher type */ SRTP_AES_ICM_128_KEY_LEN_WSALT, /* cipher key length in octets */ SRTP_HMAC_SHA1, /* authentication func type */ 16, /* auth key length in octets */ 10, /* auth tag length in octets */ sec_serv_conf_and_auth /* security services flag */ }, { /* SRTCP policy */ SRTP_AES_ICM_128, /* cipher type */ SRTP_AES_ICM_128_KEY_LEN_WSALT, /* cipher key length in octets */ SRTP_HMAC_SHA1, /* authentication func type */ 16, /* auth key length in octets */ 10, /* auth tag length in octets */ sec_serv_conf_and_auth /* security services flag */ }, NULL, (srtp_master_key_t **)test_keys, 2, /* indicates the number of Master keys */ NULL, /* indicates that EKT is not in use */ 128, /* replay window size */ 0, /* retransmission not allowed */ NULL, /* no encrypted extension headers */ 0, /* list of encrypted extension headers is empty */ NULL }; const srtp_policy_t aes_only_policy = { { ssrc_any_outbound, 0 }, /* SSRC */ { SRTP_AES_ICM_128, /* cipher type */ SRTP_AES_ICM_128_KEY_LEN_WSALT, /* cipher key length in octets */ SRTP_NULL_AUTH, /* authentication func type */ 0, /* auth key length in octets */ 0, /* auth tag length in octets */ sec_serv_conf /* security services flag */ }, { SRTP_AES_ICM_128, /* cipher type */ SRTP_AES_ICM_128_KEY_LEN_WSALT, /* cipher key length in octets */ SRTP_NULL_AUTH, /* authentication func type */ 0, /* auth key length in octets */ 0, /* auth tag length in octets */ sec_serv_conf /* security services flag */ }, NULL, (srtp_master_key_t **)test_keys, 2, /* indicates the number of Master keys */ NULL, /* indicates that EKT is not in use */ 128, /* replay window size */ 0, /* retransmission not allowed */ NULL, /* no encrypted extension headers */ 0, /* list of encrypted extension headers is empty */ NULL }; const srtp_policy_t hmac_only_policy = { { ssrc_any_outbound, 0 }, /* SSRC */ { SRTP_NULL_CIPHER, /* cipher type */ 0, /* cipher key length in octets */ SRTP_HMAC_SHA1, /* authentication func type */ 20, /* auth key length in octets */ 4, /* auth tag length in octets */ sec_serv_auth /* security services flag */ }, { SRTP_NULL_CIPHER, /* cipher type */ 0, /* cipher key length in octets */ SRTP_HMAC_SHA1, /* authentication func type */ 20, /* auth key length in octets */ 4, /* auth tag length in octets */ sec_serv_auth /* security services flag */ }, NULL, (srtp_master_key_t **)test_keys, 2, /* Number of Master keys associated with the policy */ NULL, /* indicates that EKT is not in use */ 128, /* replay window size */ 0, /* retransmission not allowed */ NULL, /* no encrypted extension headers */ 0, /* list of encrypted extension headers is empty */ NULL }; #ifdef GCM const srtp_policy_t aes128_gcm_8_policy = { { ssrc_any_outbound, 0 }, /* SSRC */ { /* SRTP policy */ SRTP_AES_GCM_128, /* cipher type */ SRTP_AES_GCM_128_KEY_LEN_WSALT, /* cipher key length in octets */ SRTP_NULL_AUTH, /* authentication func type */ 0, /* auth key length in octets */ 8, /* auth tag length in octets */ sec_serv_conf_and_auth /* security services flag */ }, { /* SRTCP policy */ SRTP_AES_GCM_128, /* cipher type */ SRTP_AES_GCM_128_KEY_LEN_WSALT, /* cipher key length in octets */ SRTP_NULL_AUTH, /* authentication func type */ 0, /* auth key length in octets */ 8, /* auth tag length in octets */ sec_serv_conf_and_auth /* security services flag */ }, NULL, (srtp_master_key_t **)test_keys, 2, /* indicates the number of Master keys */ NULL, /* indicates that EKT is not in use */ 128, /* replay window size */ 0, /* retransmission not allowed */ NULL, /* no encrypted extension headers */ 0, /* list of encrypted extension headers is empty */ NULL }; const srtp_policy_t aes128_gcm_8_cauth_policy = { { ssrc_any_outbound, 0 }, /* SSRC */ { /* SRTP policy */ SRTP_AES_GCM_128, /* cipher type */ SRTP_AES_GCM_128_KEY_LEN_WSALT, /* cipher key length in octets */ SRTP_NULL_AUTH, /* authentication func type */ 0, /* auth key length in octets */ 8, /* auth tag length in octets */ sec_serv_conf_and_auth /* security services flag */ }, { /* SRTCP policy */ SRTP_AES_GCM_128, /* cipher type */ SRTP_AES_GCM_128_KEY_LEN_WSALT, /* cipher key length in octets */ SRTP_NULL_AUTH, /* authentication func type */ 0, /* auth key length in octets */ 8, /* auth tag length in octets */ sec_serv_auth /* security services flag */ }, NULL, (srtp_master_key_t **)test_keys, 2, /* indicates the number of Master keys */ NULL, /* indicates that EKT is not in use */ 128, /* replay window size */ 0, /* retransmission not allowed */ NULL, /* no encrypted extension headers */ 0, /* list of encrypted extension headers is empty */ NULL }; const srtp_policy_t aes256_gcm_8_policy = { { ssrc_any_outbound, 0 }, /* SSRC */ { /* SRTP policy */ SRTP_AES_GCM_256, /* cipher type */ SRTP_AES_GCM_256_KEY_LEN_WSALT, /* cipher key length in octets */ SRTP_NULL_AUTH, /* authentication func type */ 0, /* auth key length in octets */ 8, /* auth tag length in octets */ sec_serv_conf_and_auth /* security services flag */ }, { /* SRTCP policy */ SRTP_AES_GCM_256, /* cipher type */ SRTP_AES_GCM_256_KEY_LEN_WSALT, /* cipher key length in octets */ SRTP_NULL_AUTH, /* authentication func type */ 0, /* auth key length in octets */ 8, /* auth tag length in octets */ sec_serv_conf_and_auth /* security services flag */ }, NULL, (srtp_master_key_t **)test_keys, 2, /* indicates the number of Master keys */ NULL, /* indicates that EKT is not in use */ 128, /* replay window size */ 0, /* retransmission not allowed */ NULL, /* no encrypted extension headers */ 0, /* list of encrypted extension headers is empty */ NULL }; const srtp_policy_t aes256_gcm_8_cauth_policy = { { ssrc_any_outbound, 0 }, /* SSRC */ { /* SRTP policy */ SRTP_AES_GCM_256, /* cipher type */ SRTP_AES_GCM_256_KEY_LEN_WSALT, /* cipher key length in octets */ SRTP_NULL_AUTH, /* authentication func type */ 0, /* auth key length in octets */ 8, /* auth tag length in octets */ sec_serv_conf_and_auth /* security services flag */ }, { /* SRTCP policy */ SRTP_AES_GCM_256, /* cipher type */ SRTP_AES_GCM_256_KEY_LEN_WSALT, /* cipher key length in octets */ SRTP_NULL_AUTH, /* authentication func type */ 0, /* auth key length in octets */ 8, /* auth tag length in octets */ sec_serv_auth /* security services flag */ }, NULL, (srtp_master_key_t **)test_keys, 2, /* indicates the number of Master keys */ NULL, /* indicates that EKT is not in use */ 128, /* replay window size */ 0, /* retransmission not allowed */ NULL, /* no encrypted extension headers */ 0, /* list of encrypted extension headers is empty */ NULL }; #endif const srtp_policy_t null_policy = { { ssrc_any_outbound, 0 }, /* SSRC */ { SRTP_NULL_CIPHER, /* cipher type */ 0, /* cipher key length in octets */ SRTP_NULL_AUTH, /* authentication func type */ 0, /* auth key length in octets */ 0, /* auth tag length in octets */ sec_serv_none /* security services flag */ }, { SRTP_NULL_CIPHER, /* cipher type */ 0, /* cipher key length in octets */ SRTP_NULL_AUTH, /* authentication func type */ 0, /* auth key length in octets */ 0, /* auth tag length in octets */ sec_serv_none /* security services flag */ }, NULL, (srtp_master_key_t **)test_keys, 2, /* indicates the number of Master keys */ NULL, /* indicates that EKT is not in use */ 128, /* replay window size */ 0, /* retransmission not allowed */ NULL, /* no encrypted extension headers */ 0, /* list of encrypted extension headers is empty */ NULL }; // clang-format off unsigned char test_256_key[46] = { 0xf0, 0xf0, 0x49, 0x14, 0xb5, 0x13, 0xf2, 0x76, 0x3a, 0x1b, 0x1f, 0xa1, 0x30, 0xf1, 0x0e, 0x29, 0x98, 0xf6, 0xf6, 0xe4, 0x3e, 0x43, 0x09, 0xd1, 0xe6, 0x22, 0xa0, 0xe3, 0x32, 0xb9, 0xf1, 0xb6, 0x3b, 0x04, 0x80, 0x3d, 0xe5, 0x1e, 0xe7, 0xc9, 0x64, 0x23, 0xab, 0x5b, 0x78, 0xd2 }; unsigned char test_256_key_2[46] = { 0xe1, 0xf9, 0x7a, 0x0d, 0x3e, 0x01, 0x8b, 0xe0, 0xd6, 0x4f, 0xa3, 0x2c, 0x06, 0xde, 0x41, 0x39, 0x0e, 0xc6, 0x75, 0xad, 0x49, 0x8a, 0xfe, 0xeb, 0xb6, 0x96, 0x0b, 0x3a, 0xab, 0xe6, 0xc1, 0x73, 0x3b, 0x04, 0x80, 0x3d, 0xe5, 0x1e, 0xe7, 0xc9, 0x64, 0x23, 0xab, 0x5b, 0x78, 0xd2 }; srtp_master_key_t master_256_key_1 = { test_256_key, test_mki_id, TEST_MKI_ID_SIZE }; srtp_master_key_t master_256_key_2 = { test_256_key_2, test_mki_id_2, TEST_MKI_ID_SIZE }; srtp_master_key_t *test_256_keys[2] = { &master_key_1, &master_key_2 }; // clang-format on const srtp_policy_t aes_256_hmac_policy = { { ssrc_any_outbound, 0 }, /* SSRC */ { /* SRTP policy */ SRTP_AES_ICM_256, /* cipher type */ SRTP_AES_ICM_256_KEY_LEN_WSALT, /* cipher key length in octets */ SRTP_HMAC_SHA1, /* authentication func type */ 20, /* auth key length in octets */ 10, /* auth tag length in octets */ sec_serv_conf_and_auth /* security services flag */ }, { /* SRTCP policy */ SRTP_AES_ICM_256, /* cipher type */ SRTP_AES_ICM_256_KEY_LEN_WSALT, /* cipher key length in octets */ SRTP_HMAC_SHA1, /* authentication func type */ 20, /* auth key length in octets */ 10, /* auth tag length in octets */ sec_serv_conf_and_auth /* security services flag */ }, NULL, (srtp_master_key_t **)test_256_keys, 2, /* indicates the number of Master keys */ NULL, /* indicates that EKT is not in use */ 128, /* replay window size */ 0, /* retransmission not allowed */ NULL, /* no encrypted extension headers */ 0, /* list of encrypted extension headers is empty */ NULL }; // clang-format off uint8_t ekt_test_key[16] = { 0x77, 0x26, 0x9d, 0xac, 0x16, 0xa3, 0x28, 0xca, 0x8e, 0xc9, 0x68, 0x4b, 0xcc, 0xc4, 0xd2, 0x1b }; // clang-format on #include "ekt.h" // clang-format off srtp_ekt_policy_ctx_t ekt_test_policy = { 0xa5a5, /* SPI */ SRTP_EKT_CIPHER_AES_128_ECB, ekt_test_key, NULL }; // clang-format on const srtp_policy_t hmac_only_with_ekt_policy = { { ssrc_any_outbound, 0 }, /* SSRC */ { SRTP_NULL_CIPHER, /* cipher type */ 0, /* cipher key length in octets */ SRTP_HMAC_SHA1, /* authentication func type */ 20, /* auth key length in octets */ 4, /* auth tag length in octets */ sec_serv_auth /* security services flag */ }, { SRTP_NULL_CIPHER, /* cipher type */ 0, /* cipher key length in octets */ SRTP_HMAC_SHA1, /* authentication func type */ 20, /* auth key length in octets */ 4, /* auth tag length in octets */ sec_serv_auth /* security services flag */ }, NULL, (srtp_master_key_t **)test_keys, 2, /* indicates the number of Master keys */ &ekt_test_policy, /* indicates that EKT is not in use */ 128, /* replay window size */ 0, /* retransmission not allowed */ NULL, /* no encrypted extension headers */ 0, /* list of encrypted extension headers is empty */ NULL }; /* * an array of pointers to the policies listed above * * This array is used to test various aspects of libSRTP for * different cryptographic policies. The order of the elements * matters - the timing test generates output that can be used * in a plot (see the gnuplot script file 'timing'). If you * add to this list, you should do it at the end. */ // clang-format off const srtp_policy_t *policy_array[] = { &hmac_only_policy, &aes_only_policy, &default_policy, #ifdef GCM &aes128_gcm_8_policy, &aes128_gcm_8_cauth_policy, &aes256_gcm_8_policy, &aes256_gcm_8_cauth_policy, #endif &null_policy, &aes_256_hmac_policy, &hmac_only_with_ekt_policy, NULL }; // clang-format on const srtp_policy_t wildcard_policy = { { ssrc_any_outbound, 0 }, /* SSRC */ { /* SRTP policy */ SRTP_AES_ICM_128, /* cipher type */ SRTP_AES_ICM_128_KEY_LEN_WSALT, /* cipher key length in octets */ SRTP_HMAC_SHA1, /* authentication func type */ 16, /* auth key length in octets */ 10, /* auth tag length in octets */ sec_serv_conf_and_auth /* security services flag */ }, { /* SRTCP policy */ SRTP_AES_ICM_128, /* cipher type */ SRTP_AES_ICM_128_KEY_LEN_WSALT, /* cipher key length in octets */ SRTP_HMAC_SHA1, /* authentication func type */ 16, /* auth key length in octets */ 10, /* auth tag length in octets */ sec_serv_conf_and_auth /* security services flag */ }, test_key, NULL, 0, NULL, 128, /* replay window size */ 0, /* retransmission not allowed */ NULL, /* no encrypted extension headers */ 0, /* list of encrypted extension headers is empty */ NULL };