

INTELLIGENCE IN VALIDATION

DOCUMENT

TITLE

GA973

SSP

Implementation

Guide

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 2

CONTENTS

1 Introduction 3
2 Overview Of SSP 5

2.1 General Information 5
2.2 Advantages 5
2.3 Requirments 5
2.4 Support Available 6

3 Communicating With Devices Using SSP 7
3.1 Packet Format 7
3.2 Ports and Addresses 8
3.3 Example 9

4 Encryption 10
4.1 Encryption Algorithm 10
4.2 Encryption Keys 10
4.3 Packet Format 12
4.4 Example 12

5 ITL Libraries 13
5.1 Data Structures 13
5.2 Initalising Libraries 15
5.3 Linking Functions from the Library 15
5.4 Setting Up The Command Structure 19
5.5 Constructing SSP Packets 20

6 Communicating With a Slave Device 21
6.1 Communication Overview 21
6.2 Using AN ITL Library To Start Communication 23
6.3 Initialisation Of The Device 23

7 Polling Devices 26
7.1 Poll Overview 26
7.2 Catching Multiple Poll Responses In One Response Data Packet 26
7.3 The Importance of Poll Handling 27
7.4 Poll Delay 27
7.5 Handling Events That Require More Data 27

8 ITL Devices SSP Operation 28
8.1 Generic Commands 28
8.2 Generic Responses 32
8.3 Bank Note Validator 33
8.4 NV11 44
8.5 SMART Payout 52
8.6 SMART Hopper 69

9 Commands for ITL Devices 86
9.1 Bank Note Validator (NV9USB, NV10USB, BV20, BV50, BV100, NV200) 86
9.2 NV11 92
9.3 SMART Payout 99
9.4 SMART Hopper 112

10 Updating Devices in SSP 123
10.1 File Structure 123
10.2 Process Overview 124
10.3 Process Details 126

11 Library Reference 132
11.1 ITLLib.dll 132
11.2 ITLSSPProc.dll 137

12 Appendix 148

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 3

1 INTRODUCTION

This document provides information and resources that explain how to implement and

integrate the Smiley Secure Protocol (SSP) and the encrypted version Encrypted Smiley

Secure Protocol (eSSP) into a cash handling application.

This document is intended for those who will be implementing SSP/eSSP to communicate

with a cash handling device.

This manual is intended for use alongside the SDKs developed by ITL. These SDKs are

available in multiple programming languages and for multiple combinations of units.

Please contact your local support office for more information.

WARNING

 If you do not understand any part of this manual please contact your local

support office for assistance; contact details are over the page. In this way we

may continue to improve our product.

 Innovative Technology Ltd has a policy of continual product improvement. As a

result the products supplied may vary from the specification described here.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 4

1.1.0.1

MAIN HEADQUARTERS

Innovative Technology Ltd

Derker Street – Oldham – England - OL1 4EQ

Tel: +44 161 626 9999 Fax: +44 161 620 2090

E-mail: support@innovative-technology.co.uk

Web site: www.innovative-technology.co.uk

GROUP

EMAIL CONTACTS

BRAZIL

suporte@bellis-technology.com.br

CHINA

support@innovative-technology.co.uk

COLOMBIA

support@automated-transactions.net

GERMANY

support@automated-transactions.de

UNITED KINGDOM

support@innovative-technology.co.uk

SPAIN

supportes@innovative-technology.eu

UNITED STATES OF AMERICA

supportusa@bellis-technology.com

REST OF THE WORLD

support@innovative-technology.co.uk

http://www.innovative-technology.co.uk/
mailto:suporte@bellis-technology.com.br
mailto:support@innovative-technology.co.uk
mailto:support@automated-transactions.net
mailto:support@automated-transactions.de
mailto:support@innovative-technology.co.uk
mailto:supportusa@bellis-technology.com

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 5

2 OVERVIEW OF SSP

2.1 GENERAL INFORMATION

Smiley Secure Protocol (SSP) is a serial communication protocol designed by Innovative

Technology LTD to address problems historically experienced by cash handling systems in

gaming machines. Problems such as acceptor swapping, reprogramming acceptors and

line tapping.

Since its first release in May 1998 the SSP protocol has developed and expanded to include

the functionality offered by the latest generation of cash handling devices.

The interface uses a master slave communication model, the host machine is the master

and the devices (Note Validator, SMART Hopper, SMART Payout) are the slaves. The devices

will respond to commands sent from the host machine using a bi-directional serial

transmission.

See product documentation and GA138 (eSSP Specification) for details of the hardware

connections and requirements.

2.2 ADVANTAGES

SSP is an established communication protocol for cash handling devices, used a wide

variety of kiosk and gaming applications worldwide.

With the encrypted layer implemented it provides secure communication between the host

and the devices inside the system that cannot be manipulated externally. The security is in

the key rather than relying on a cipher algorithm and as such provides substantially higher

security that other cash handling protocols available.

Using SSP provides the full range of functionality provided by Innovative Technology’s bank

note validators, recyclers and coin handling devices.

The latest releases of datasets and firmware can be loaded into the device in SSP using the

host application firmware. If the infrastructure is provided to the host machine, this can

allow remote updates further increasing the security and functionality of the cash handling

system.

The SSP specification is an open standard that is available for download from

http://www.innovative-technology.co.uk and can be implemented by any device

manufacturer without restrictions on license or royalties.

2.3 REQUIRMENTS

To communicate using SSP a bi-direction serial port or USB port capable of operating at

9600 baud is required. A 16 bit CRC is required to be calculated, this is the biggest

processing overhead in the unencrypted SSP communication.

To use the encrypted layer, more processing is required to compute the encryption using

128 bit AES key. We recommend a processor that can perform AES using hardware

however a processor running at least 200MHz should be capable of performing the

calculation.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 6

2.4 SUPPORT AVAILABLE

Innovative Technology LTD. strives to make SSP as straightforward as possible to

implement for a quick development, prototype and time to market. In addition to this

comprehensive document we provide:

 Libraries (DLL for Microsoft Windows and C++ files for Linux) of methods and data

structures to enable fast development. The methods provide functions like send

commands and setup encryption keys. They are described more in section 0.

 Example applications demonstrating the use of the libraries and examples of

polling the validator and handling the responses.

Innovative Technology LTD support engineers are available in the regional offices to assist

with training and implementation of the SSP protocol; contact details are at the beginning

of this manual or on the website – http://www.innovative-technology.co.uk.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 7

3 COMMUNICATING WITH DEVICES USING SSP

3.1 PACKET FORMAT

A packet is a formatted collection of data. The SSP packets are constructed using a

sequence of bytes where each position in the sequence of bytes represents a field; as

described below.

Whilst in most applications the construction, encryption, decryption and parsing of packets

will be handled behind the scenes by the libraries, the description here is provided for

analysis of logs and full understanding of the underlying communication.

The fields that construct the SSP packet are as shown below:

STX

Single byte indicating the start of a packet, defined as 0x7F. If any other part of the packet

contains 0x7F, the last step before transmission the byte should be repeated

(0x7F becomes 0x7F 0x7F) to indicate it is not a STX byte; this is called byte stuffing.

SEQ/ID

A combination of two items of data: the sequence flag (MSB, bit7) and the address of the

device (bit 6 to bit 0, LSB).

Each time the master sends a new packet to a device it alternates the sequence flag. If a

device receives a packet with the same sequence flag as the last one, it does not execute

the command but simply repeats its last reply. In a reply packet the address and sequence

flag match the command packet.

For example a SMART Hopper by default has an address of 0x10 (16 decimal). When the

sync bit is equal to 1 the byte sent to the Hopper is 0x90. On the next command, the sync

bit is toggled, in this case 0, the byte sent would be 0x10.

Length

The number of bytes of data in the data field (including the command and all associated

data), it does not include the STX, SEQ/ID, or CRC fields.

1 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 1 0 0 0 0

1001 0000 = 0x90

0001 0000 = 0x10

1001 0000 = 0x90

INFORMATION

In all documentation and examples of SSP Innovative Technology refer to the bytes in

hexadecimal format (using the notation 0x0A in documentation but not in examples for

clarity of reading).

STX SEQ/ID LENGTH DATA … CRC LSB CRC MSB

SEQ ADDRESS

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 8

Data

The commands and/or data being sent in the packet to the device.

CRC

The final 2 bytes are used for a Cyclic Redundancy Check (CRC). This is provided to detect

errors during transmission. The CRC is calculated using a forward CRC-16 algorithm with

the polynomial (X16 + X15 + X2 + 1). It is calculated on all bytes except STX and initialised

using the seed 0xFFFF. The CRC is calculated before byte stuffing.

3.2 PORTS AND ADDRESSES

Each device using the SSP protocol has a pre-programmed address; using this address the

host communicates with each device. The device will only respond to commands addressed

to it. The address is echoed in the response so the host can confirm which device is

responding.

There are two common models of connection for devices:

1. . Single communication port using a shared communication bus to which the RX

(receive) pin and TX (transmit) pin of all devices is connected. If multiple devices

are connected in this arrangement it is important that the software controls the

port access carefully. This is discussed in Appendix F – Sharing Resources.

2. Two separate communication ports, with 2 separate connections. This is typical

when using USB connections to multiple devices.

Bank Note Acceptor

Address: 0x00

SMART Hopper

Address: 0x10

Host Application

COM 1

Bank Note Acceptor

Address: 0x00

SMART Hopper

Address: 0x10

Host Application

COM 1 COM 2

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 9

3.3 EXAMPLE

The format of an unencrypted sync command (0x11) to a bank note validator located on

address 0 would be constructed as follows:

STX SEQ/ID LENGTH DATA … CRC LSB CRC MSB

SEQ ADDRESS

7F 80 01 11 65 82

1 0000000

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 10

4 ENCRYPTION

Communication with devices that support it can be encrypted using an encryption layer.

This encryption ensures that all commands and responses are secure and cannot be

replayed or manipulated. When using encryption, the protocol is referred to as eSSP or

encrypted SSP. When an encrypted command is sent to a device that supports it, the

response will be encrypted; unencrypted commands receive an unencrypted response.

Encryption is mandatory for all payout devices and optional for pay in devices. Innovative

Technology LTD. recommends that encryption is used in all applications where it is within

the capability of the host to perform the encryption and decryption.

There are two classes of command and response, general commands and commands

involved in credit transfer. General commands may be sent with or without using the

encryption layer. The device will reply using the same method. If the response contains

credit information it may not be reported unless encryption is used. Credit transfer

commands, a hopper payout for example, will only be accepted by the slave if received

encrypted.

4.1 ENCRYPTION ALGORITHM

The encryption algorithm used in eSSP is a standard encryption method used worldwide in

software for data storage and transmission called Advanced Encryption Standard (AES). In

June 2003 the U.S. Government (NSA) announced that AES is secure enough to protect

classified information up to the ‘top secret’ level, which is the highest security level.

eSSP implements AES with a 128-bit key. Data is encrypted in blocks of 16 bytes any

unused bytes in a block should be packed with random bytes. For more details on the

algorithm, please see: http://en.wikipedia.org/wiki/Advanced_Encryption_Standard.

The SSP libraries provided by Innovative Technology LTD. contain all the algorithms

required for encryption and decryption. If it is required to implement eSSP on a platform

other than Microsoft Windows, Linux and compatible operating systems Innovative

Technology can provide C source for the algorithms required (encryption, decryption, prime

number generation, CRC calculation etc.); please contact your local support office for more

details.

4.2 ENCRYPTION KEYS

The encryption key is 128 bits long, divided into two parts. The lower 64 bits are fixed and

specified by the machine manufacturer, this allows the manufacturer control which devices

are used in their machines. The default for this part is “01 23 45 67 01 23 45 67” (hex

bytes). The higher 64 bits are securely negotiated by the slave and host at power up, this

ensures each machine and each session are using different keys.

4.2.1 KEY NEGOTIATION

The key is negotiated by the Diffie-Hellman key exchange method. This is a widely

published method which allows two sides of an insecure communication link to jointly

establish a shared secret key. Even if another device is monitoring the communication it is

not possible to learn the key. See: http://en.wikipedia.org/wiki/Diffie-Hellman for a full

description and mathematical explanation.

The implementation in eSSP is detailed below in a flowchart. Example one byte numbers

have been added for clarity however in the eSSP implementation the numbers are 8 byte

(64 bit).

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 11

COLOUR GUIDE

Public Data Generated by Host

Public Data Generated by Slave
PRIVATE Data

 Required to know and generate the key but never transmitted, keeping the key
 secure.

In an implementation of eSSP using the ITL libraries, the prime numbers are generated by

the library. Please note that if you are generating your own prime numbers the Generator

must be larger than the Modulus. If you are using the library it is only required of the

Host Machine Device (Note Validator etc.)

Generate prime number
GENERATOR (0x1D)

Use command ‘Set Generator’
(0x4A) to send to device

Check GENERATOR (0x1D)
is prime and store. Respond OK.

Generate prime number
MODULUS (0x35)

Use command ‘Set modulus’ (0x4B)
to send to device

Check MODULUS (0x35)
is prime and store. Respond OK.

Generate Random Number
HOST_RND (0x53)

Calculate HostInterKey (0x2B) =
(GENERATOR ^ HOST_RND)

 mod MODULUS

Use command ‘Request Key
Exchange’ (0x4C) to send to slave.

Generate Random Number
SLAVE_RND (0x83)

Calculate SlaveInterKey (0x2B) =
(GENERATOR ^ SLAVE_RND)

mod MODULUS

Send SlaveInterKey to host as
reply to

‘Request Key Exchange’

Calculate Key (0x2B): =
(SlaveInterKey ^ HOST_RND)

mod MODULUS

Calculate Key (0x2B): =
(HostInterKey ^ SLAVE_RND)

mod MODULUS

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 12

program to transmit the numbers to the device, store the response to 0x4C and to call the

relevant functions.

4.3 PACKET FORMAT

The encrypted packet is wrapped inside the data field of a standard SSP packet. The

encrypted section is constructed from the following fields.

STEX

Single byte indicating the start of an encrypted message; defined as 0x7E. This byte is not

encrypted.

Length

The number of bytes of data in the data field (including the command and all associated

data), It does not include any other fields.

Count

A 4 byte unsigned integer representing the sequence count of encrypted packages. The

packets are sequenced using this count; this is reset to 0 after a power cycle and each time

the encryption keys are successfully negotiated. The count is incremented by the host and

device each time they successfully encrypt and transmit a packet and each time a received

packet is successfully decrypted. After a packet is successfully decrypted the COUNT in the

packet should be compared with the internal COUNT, if they do not match then the packet

is discarded.

Packing

Random data to make the number of bytes used in the fields LENGHT + COUNT + DATA +

PACKING + CRCL + CRCH a multiple of 16 bytes. This is required for the AES algorithm.

CRCL/CRCH

As in the SSP packet, low and high byte of a forward CRC-16 algorithm using the

Polynomial (X16 + X15 + X2 + 1) calculated on all bytes except STEX. It is initialised using the

seed 0xFFFF.

4.4 EXAMPLE

The final result of the encrypted section is then used in the data filed of a standard SSP

packet as shown below, with an example of a POLL command (0x07).

The final complete packet is as follows. The encrypted bytes are highlighted in red.

7F 80 11 7E 92 2C F0 C6 74 40 D1 38 B9 17 18 4D FC 76 11 B4 E3 66

STEX LENGTH COUNT DATA… PACKING CRCL CRCH

STX SEQ/ID LENGTH DATA … CRC LSB CRC MSB

7E 01 00 00 00 A7 07 19 2B … 56 4F

7F 80 11 92 2C F0 C6 74 ... E3 66

AES ENCRYPTION

7E

STEX LENGTH COUNT DATA… PACK… CRCL CRCH

NOTE

It is not possible to decrypt the packet and examine the contents without the 128 bit key.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 13

5 ITL LIBRARIES

Innovative Technology LTD. provide libraries (DLL for Microsoft Windows and C++ files for

Linux) of methods and data structures to enable fast development. The methods provide

functions like send command and setup encryption keys. They are described in full detail in

section 0.

In this section the common components of the libraries are discussed, outlining how a

packet is constructed and sent to the device.

The examples contained in this section are in C++.

5.1 DATA STRUCTURES

The functions contained in the libraries are called with arguments that are references

(pointers) to instances of structures that the developer will need to define in their code.

These structures are detailed here for inclusion in header files.

SSP_COMMAND.

Used by the library to compile and send a packet to the validator.

struct SSP_COMMAND
{
 SSP_FULL_KEY Key;
 unsigned long BaudRate;
 unsigned long Timeout;
 unsigned char PortNumber;
 unsigned char SSPAddress;
 unsigned char RetryLevel;
 unsigned char EncryptionStatus;
 unsigned char CommandDataLength;
 unsigned char CommandData[255];
 unsigned char ResponseStatus;
 unsigned char ResponseDataLength;
 unsigned char ResponseData[255];
 unsigned char IgnoreError;
};

NOTE

Ensure that you have the correct library for the software language and platform you are

using. This will typically be “ITLSSPProc.dll” for C/C++ or Visual Basic 6, and “ITLlib.dll” for

C# .NET or Visual Basic .NET.

The correct library will need to be loaded at runtime if using C/C++ or Visual Basic, or

referenced into your program if using .NET.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 14

SSP_KEYS

Holds information about the encryption key during the eSSP key exchanging process

outlined in section 4.2.1.

struct SSP_KEYS
{
 unsigned __int64 Generator;
 unsigned __int64 Modulus;
 unsigned __int64 HostInter;
 unsigned __int64 HostRandom;
 unsigned __int64 SlaveInterKey;
 unsigned __int64 SlaveRandom;
 unsigned __int64 KeyHost;
 unsigned __int64 KeySlave;
};

SSP_FULL_KEY

Hold the two components of the full 128 bit key, once it has been negotiated.

struct SSP_FULL_KEY
{
 unsigned long long FixedKey;
 unsigned long long EncryptKey;
};

SSP_COMMAND_INFO

Holds additional information about commands being sent and can be used to assist with

logging communications with the validator.

struct SSP_COMMAND_INFO
{
 unsigned char* CommandName;
 unsigned char* LogFileName;
 unsigned char Encrypted;
 SSP_PACKET Transmit;
 SSP_PACKET Receive;
 SSP_PACKET PreEncryptTransmit;
 SSP_PACKET PreEncryptRecieve;
};

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 15

PORT_CONFIG

Only required when the using two or more communication ports with the same program.

struct PORT_CONFIG
{
 unsigned char NumberOfPorts;
 unsigned char PortID[MAX_PORTS];
 unsigned long BaudRate[MAX_PORTS];
};

5.2 INITALISING LIBRARIES

When loading a dynamic link library (.dll) at runtime on a Windows platform, the Windows

function LoadLibrary() can be used to return a handle to the library. This handle can then be

used as a parameter to the Windows function GetProcAddress() in order to obtain function

addresses from the library. Both these functions require the developer to include

“windows.h”.

// Load dll
HINSTANCE hInst = LoadLibrary("Libraries\\ITLSSPProc.dll");
if (hInst != NULL)
{
 DoWork(); // Library loaded correctly
}

If you are using the .Net library (ITLLib.dll) then a reference needs to be added to the

project. The host software can then create an instance of the SSPComms class to interface

with the device.

5.3 LINKING FUNCTIONS FROM THE LIBRARY

The functions that should be linked from the library depend on the setup of units that the

developer plans to implement. When using Windows, the Windows function

GetProcAddress() can be used to lookup the method names in the library and link them to a

function pointer. This requires “windows.h” to be included. This step is not required for a

.Net implementation.

For a single device, the only functions that will be needed are:

OPENSSPCOMPORTUSB

OpenSSPComPortUSB opens a USB communication port. The port number and parameters

are defined in the instance of SSP_COMMAND structure and passed as a pointer to the

method. Returns an unsigned integer.

typedef UINT (__stdcall* DLLFUNC1)(SSP_COMMAND* cmd);
DLLFUNC1 openSSPComPortUSB = (DLLFUNC1)GetProcAddress(hInst, "OpenSSPComPortUSB ");

CLOSESSPCOMPORTUSB

CloseSSPComPortUSB closes the open USB COM port. Returns an unsigned integer and

requires no parameters.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 16

typedef UINT (__stdcall* DLLFUNC2)(void);
DLLFUNC2 closeSSPComPortUSB = (DLLFUNC2)GetProcAddress(hInst, "CloseSSPComPortUSB");

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 17

SSPSENDCOMMAND

SSPSendCommand constructs the packet, does any required encryption and sends to the

device the command constructed in the instance of the SSP_COMMAND structure, passed

as a pointer to the method. Returns an unsigned integer. As well as the pointer to the

SSP_COMMAND structure instance, also takes a pointer to a SSP_COMMAND_INFO

structure instance.

typedef UINT (__stdcall* DLLFUNC3)(SSP_COMMAND* cmd, SSP_COMMAND_INFO* sspInfo);
DLLFUNC3 sspSendCommand = (DLLFUNC3)GetProcAddress(hInst, "SSPSendCommand");

INITIATESSPHOSTKEYS

InitiateSSPHostKeys generates the prime numbers for generator, modulus and

host_random. This returns an unsigned integer and takes a pointer to an instance of the

SSP_KEYS structure along with a pointer to an instance of SSP_COMMAND structure as

parameters.

typedef UINT (__stdcall* DLLFUNC4)(SSP_KEYS* key, SSP_COMMAND* cmd);
DLLFUNC4 initiateSSPHostKeys = (DLLFUNC4)GetProcAddress(hInst, "InitiateSSPHostKeys");

CREATESSPHOSTENCRYPTIONKEY

CreateSSPHostEncryptionKey is called after the device has returned the SLAVE_INTER_KEY

as a response from command 0x4C. Does the mathematical functions to generate the fill

128 bit key. Returns an unsigned integer and takes a pointer to an SSP_KEYS structure as

a parameter.

typedef UINT (__stdcall* DLLFUNC5)(SSP_KEYS* key);
DLLFUNC5 createSSPHostEncryptionKey =
 (DLLFUNC5)GetProcAddress(hInst, "CreateSSPHostEncryptionKey");

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 18

5.3.2 MULTIPLE COM PORTS

The following two function descriptions are only required when the developer is planning to

support multiple units in their program which are located on separate COM ports. These

functions should be used instead of the OpenSSPComPortUSB and CloseSSPComPortUSB

functions.

OPENSSPMULIPLECOMPORTS

OpenSSPMulipleComPorts opens multiple communication ports. Takes a pointer to a

instance of a PORT_CONFIG structure as a parameter and returns an unsigned integer.

typedef UINT (__stdcall* DLLFUNC6)(PORT_CONFIG* pcnfg);
DLLFUNC6 openSSPMulipleComPorts = (DLLFUNC6)GetProcAddress(hInst, "OpenSSPMulipleComPorts");

CLOSESSPMULTIPLEPORTS

CloseSSPMultiplePorts closes all open COM ports. Returns an unsigned integer and takes

no parameters.

typedef UINT (__stdcall* DLLFUNC7)(void);
DLLFUNC7 closeSSPMultiplePorts = (DLLFUNC7)GetProcAddress(hInst, "CloseSSPMultiplePorts");

5.3.3 VALIDATING LIBRARY LINKING

Once these function pointers have been defined and linked to the library, it is

recommended to verify the process was successfully completed as shown in the example

below.

typedef UINT (__stdcall* DLLFUNC3)(SSP_COMMAND* cmd, SSP_COMMAND_INFO* sspInfo);
DLLFUNC3 SSPSendCommand = (DLLFUNC3)GetProcAddress(hInst, "SSPSendCommand");

// Check for failure
if (SSPSendCommand == NULL)
{
 FreeLibrary(hInst);
 return false;
}

NOTE

This function is spelt incorrectly in the C++ library, it is not a typing error in the manual.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 19

5.4 SETTING UP THE COMMAND STRUCTURE

The command structure (SSP_COMMAND) is key to the SSP communication and contains

the data, port information and additional data.

There are a set of values that need to be set before it can be passed to the libraries and any

communication with the device can take place. Variables that need setting by the

developer are as follows.

Variable Description Recommended Value

BaudRate
The speed of the communications

between the unit and the host.
9600

SSPAddress The SSP address of the device.

Varies, default for a note

validator is 0x00 and a

hopper is 0x10.

Timeout

The length of time in milliseconds the

library will wait for a response from the

device before retrying the command.

1000 (1 second)

RetryLevel

The number of times the library will retry

sending a packet to the device if no

response is received.

3

PortNumber
The port number of the COM port the

device is connected to.

Varies based on the host

machine.

EncryptionStatus

Whether the library will encrypt algorithm

the packet data before it is transmitted

(eSSP).

False until key is

negotiated, true after.

EXAMPLE

SSP_COMMAND* commandStructure = new SSP_COMMAND();
commandStructure->BaudRate = 9600;
commandStructure->SSPAddress = 0x10;
commandStructure->Timeout = 1000;
commandStructure->RetryLevel = 3;
commandStructure->PortNumber = 7;
commandStructure->EncryptionStatus = false;

It is typical to have a separate SSP_COMMAND instance for each connected device.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 20

5.5 CONSTRUCTING SSP PACKETS

When using the ITL SSP library to send a command, the only two fields that need to

modified are:

 Data

Represented as an array of bytes, 255 bytes are available in the array.

 Length

A single byte representing the number of bytes used in the data array for the

command and associated data.

These bytes are held in the SSP_COMMAND command structure. The other fields that make

up the packet are populated by library functions. If the user does not use the ITL SSP library

they will be required to construct the packet in its entirety for transmission.

The following example shows the construction and transmission of a sync command (0x11)

using the DLL in C++.

CommandStructure->CommandData[0] = 0x11;
CommandStructure->CommandDataLength= 1;
// The command is now ready to send
// (providing the command structure has been initialised)
SSPLibrary->SSPSendCommand(CommandStructure, InfoStructure);

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 21

6 COMMUNICATING WITH A SLAVE DEVICE

These steps provide an overview of what is required to communicate with a slave device.

Specific flow charts follow in section 7, describing the events for each specific slave device.

All the examples in this section are written in Windows C++, for other languages please see

the Appendix.

6.1 COMMUNICATION OVERVIEW

6.1.4 SENDING A COMMAND USING THE ITL LIBRARY

A “command” refers to the data located inside the COMMAND_STRUCTURE that was

initialised earlier in the program. Along with the initialisation data the developer needs to

setup two other variables in order to send a command to the slave using the ITL library.

These are:

 The byte array inside the command structure named CommandData.

 The byte inside the command structure named CommandDataLength.

CommandData is populated with bytes referring to the operation the device is to perform.

The first element is always the byte code of the operation, for example reset is 0x01. This

particular command doesn’t need any other data adding to the array, so the length of the

array is 1. This is set in CommandDataLength.

commandStructure->CommandData[0] = 0x01;
commandStructure->CommandDataLength = 0x01;
// Send command
sspLibrary->SSPSendCommand(commandStructure, infoStructure);

Some commands require more information to be sent along with the command byte. An

example of this is the command to set the channel inhibits of the device. The byte code for

this is 0x02 (stored in first position in the array). For channel inhibits an additional two

bytes of information need adding to the array after the command byte. This information

goes in the next 2 available slots in the array. Set the CommandDataLength variable to

reflect the bytes populating CommandData.

// To set channel inhibits
commandStructure->CommandData[0] = 0x02; // Slot 0: command byte to set
 // protocol
commandStructure->CommandData[1] = 0xFF; // Slot 1: first byte of info
commandStructure->CommandData[2] = 0xFF; // Slot 2: second byte of info
commandStructure->CommandDataLength = 0x03; // Length of array
// Send command
sspLibrary->SSPSendCommand(commandStructure, infoStructure);

Commands can be sent to the device either in plain format or encrypted. The ITL library

provides methods to simplify the key negotiation and encryption process, allowing minimal

effort on the developer’s behalf to implement secure communication. For more information

on negotiating a secure connection with the slave device, please see section 4.2.1.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 22

6.1.5 RETRIEVING A RESPONSE FROM A SLAVE

Once a command has been sent to the device, it will send back a response. The format of a

response is very similar to that of a command. The response data is located in the

command structure in the byte array ResponseData. There is also a variable named

ResponseDataLength, giving the length of the response data in the array. The first byte of

the response data array will be a generic response byte, an example of this is the byte

0xF0; representing the “OK” response, it indicates that the slave has received the command

and is acting on it. For a full list of generic responses see the Appendix.

// Send command
sspLibrary->SSPSendCommand(commandStructure, infoStructure);

// Check the command was successful:
if (commandStructure->ResponseData[0] == (char)0xF0)
{
 // Command received successfully and the unit is acting on it
}
else
{
 // There was a problem with the command sent
}

In some cases, responses provide additional data to the generic response byte. An example

of this could be the command to get the serial number of the slave (0x0C), the developer

would send the command and retrieve the response in the same way as the previous

command, however the length of this response stored in ResponseDataLength would be 5.

The first byte will be the generic response byte, followed by 4 bytes representing the 4 byte

value of the serial number.

int serialNumber = 0;
if (commandStructure->ResponseData[0] == (char)0xF0)
{
 char* c = new char[4];
 c[0] = commandStructure->ResponseData[1];
 c[1] = commandStructure->ResponseData[2];
 c[2] = commandStructure->ResponseData[3];
 c[3] = commandStructure->ResponseData[4];
 // Conversion function
 serialNumber = ConvertBytesToInt32(c);
 delete[] c;
}

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 23

6.2 USING AN ITL LIBRARY TO START COMMUNICATION

Ensure the slave is powered up and connected to the host machine. The following steps

detail the process of negotiating a key with the device using the ITL libraries.

6.2.1 ESTABLISH COMMUNICATION

1. Open the COM port using the library function.

2. Disable encryption temporarily in the command structure as the first packets that

need to be sent are unencrypted. This is done by setting the boolean value

EncryptionStatus to false.

3. Send a synchronisation packet to the slave (0x11). This is the first of the command

packets that will be sent to the slave and ensures that the slave is connected

correctly and responding to commands. The host should wait for an OK (0xF0)

response from Sync before progressing with the startup sequence.

6.2.2 KEY NEGOTIATION

Before sending any encrypted packets the developer needs to prepare the device to receive

and decrypt them. Full code examples of this step can be found in the Appendix.

1. Call the library function “initiate SSP host keys” passing a pointer to the key

structure and the command structure as parameters. The library will generate two

64 bit prime numbers, the generator and the modulus, and store them in the key

structure that was passed. These prime numbers are used in the encryption

algorithm.

2. The generator and modulus located in the keys structure need to be sent to the

slave using the set generator (0x4A) and set modulus (0x4B) commands.

3. Send the request key exchange (0x4C) command with the host inter key, the slave

intermediate key can now be retrieved from the command structure response data

and stored in the key structure.

4. Call the library function “create SSP host encryption key” with a reference to the

key structure passed as a parameter, this then calculates the final host key and

stores it in the keys structure in the variable KeyHost.

5. In the SSP_COMMAND structure there is a variable of type SSP_FULL_KEY. This

structure contains 2 variables, FixedKey and EncryptKey. The encrypt key should be

set to the KeyHost variable (calculated in the last step). The fixed key for standard

eSSP communications is 0x0123456701234567.

Once this is complete, the EncryptionStatus flag in the SSP_COMMAND structure can be set

to true to notify the library that it should begin to encrypt packets using the key stored

above.

6.3 INITIALISATION OF THE DEVICE

6.3.1 SET HOST PROTOCOL VERSION

The set host protocol version command (0x06) allows the slave device to know what

protocol it should report certain events in. Later protocols can include extra commands,

extra response data or different response formatting. For this reason the protocol version is

set immediately after the key negotiation so no commands or data are missed.

// Set protocol version to 7
commandStructure->CommandData[0] = 0x06;
commandStructure->CommandData[1] = 0x07;
commandStructure->CommandDataLength = 0x02;
sspLibrary->SSPSendCommand(commandStructure, infoStructure);

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 24

6.3.2 SETUP REQUEST

The setup request command (0x05) can be sent to a device at any time to obtain a

response containing information about the configuration of the device. This information is

required for the developer to set up parts of their application. An example of this is an array

to hold the value stored in each channel. There are two formats of setup request response.

 Note Validator

 Hopper

For a complete description of the setup request for a particular unit, please lookup the

setup request command for that unit in section 9. A brief overview is listed below.

Note Validator Setup Request Data

 Unit type.

 Firmware version.

 Country code – deprecated protocol >= 6.

 Value multiplier – deprecated protocol >= 6.

 Number of channels.

 Channel values – deprecated protocol >= 6.

 Security of channels – deprecated.

 Real value multiplier.

 Protocol version.

 Channel country codes – protocol >=6 only.

 Extended channel values – protocol >= 6 only.

Hopper Setup Request Data

 Unit type.

 Firmware version.

 Country code - deprecated protocol >= 6.

 Protocol version.

 Number of coin types.

 Coin type values.

 Coin type country codes – protocol >= 6 only.

6.3.3 SET INHIBITS / SET COIN MECH INHIBITS

These two commands are for Note Validators and Hoppers respectively. The purpose of

these commands is to control whether the unit will accept notes/coins on specified

channels. When a unit is first powered up, all the channels will by default be inhibited. This

is so the unit will not accept any notes/coins before the host machine is ready.

Validator

The command byte 0x02 (Note Validators) is followed by two bytes making up an “inhibit

register”. If a bit is set to 1 the channel will be enabled to accept notes, 0 means the notes

in the associated channel will be rejected

Hopper

The command byte 0x40 (Hoppers) is followed by two bytes making up an “inhibit register”

for a coin mechanism if connected. If no coin mechanism is connected the command will

return Wrong Number Of Parameters (0xF3). If a bit is set to 1 the channel will be enabled

to accept coins, 0 means the coins in the associated channel will be rejected

Please see the tables below for details on “inhibit registers”.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 25

REGISTER 1

Channel

8

Channel

7

Channel

6

Channel

5

Channel

4

Channel

3

Channel

2

Channel

1

0 0 0 0 0 1 1 1

REGISTER 2

Channel

16

Channel

15

Channel

14

Channel

13

Channel

12

Channel

11

Channel

10

Channel

9

0 0 0 0 0 0 0 0

The above two tables represent the two bytes following the command byte in the

CommandData array. In this example only channels 1, 2 and 3 will be able to receive

notes/coins.

The first byte would be 0x07 (register 1) and the second byte would be 0x00 (register 2).

// Enable channels 1 to 3 on Note Validator
commandStructure->CommandData[0] = 0x02;
commandStructure->CommandData[1] = 0x07; // in binary = 00000111
commandStructure->CommandData[2] = 0x00; // in binary = 00000000
commandStructure->CommandDataLength = 0x03;
sspLibrary->SSPSendCommand(commandStructure, infoStructure);

6.3.4 ENABLE

The final command a developer will need when initialising a device is the enable command.

This command effectively “turns on” the device so it can begin receiving commands such as

dispense, and acting on them. It is a single byte command of 0x0A which will return a 0xF0

(OK) response if successful.

// Enable
commandStructure->CommandData[0] = 0x0A;
commandStructure->CommandDataLength = 0x01;
sspLibrary->SSPSendCommand(commandStructure, infoStructure);

NOTE

It may be beneficial to send a poll command immediately before the Enable command in

order to process any events which may be left in the poll queue. It is possible that the host

may not want to Enable the device based on what it receives in this Poll response.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 26

7 POLLING DEVICES

7.1 POLL OVERVIEW

The response to a poll command is a buffered list of bytes detailing any events that have

happened since the last poll command. The developer must monitor these poll responses

in order to respond to the events appropriately. The response will start with the “OK”

response if the poll was successful. After this will be the event(s).

// Poll
commandStructure->CommandData[0] = 0x07;
commandStructure->CommandDataLength = 0x01;
sspLibrary->SSPSendCommand(commandStructure, infoStructure);

// Check Poll response if poll successful
if (commandStructure->ResponseData[0] == (char)0xF0)
{
 // Poll successful
}

7.2 CATCHING MULTIPLE POLL RESPONSES IN ONE RESPONSE DATA PACKET

When the slave is polled it will report a list of all the latest events that have happened.

There could be multiple events in this list so it is important to iterate through the entire

length of the response array (upto ResponseDataLength) and check each byte for

responses and then act on each one appropriately.

// Poll
commandStructure->CommandData[0] = 0x07;
commandStructure->CommandDataLength = 0x01;
sspLibrary->SSPSendCommand(commandStructure, infoStructure);

// Check through each poll response if first byte is “OK”
if (commandStructure->ResponseData[0] == (char)0xF0)
{
 for (int i = 1; i < commandStructure->ResponseDataLength; i++)
 {
 // Deal with specific poll responses here
 switch (commandStructure->ResponseData[i])
 {
 // Note stacked response
 case (char)0xEB: break;
 // Cashbox removed response
 case (char)0xE3: break;
 // Cashbox replaced response
 case (char)0xE4: break;
 // Credit response, this has additional data
 case (char)0xEE:
 {
 unsigned char credit =
 commandStructure->ResponseData[i+1];
 i++; // Now skip data in loop
 break;
 }
 }
 }
}

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 27

As shown above in the case of 0xEE, some poll responses may have additional data located

in the subsequent array elements and these should be handled as follows.

 When the poll event is detected (through the switch/case statement) the

specification (GA138) details how many bytes following the event are associated

with it. These should be accessed using an offset from the iterator variable. For

example:

case (char)0xEE: {
credit = commandStructure->ResponseData[i+1];

 Once the event has been processed the iterator should be incremented by the

number of bytes associated with that event such that they are not considered as

part of the switch statement. For example:

i++;
break;

7.3 THE IMPORTANCE OF POLL HANDLING

The poll command and associated responses is critical to the operation of the validator.

It is vital that all polls are handled correctly. Events such as credits (where the device has

accepted and stored currency) will be passed across as a poll response. If the host misses

this response, it will not register the accepted currency. This can obviously cause critical

issues with totals or counters in the host machine. More importantly it could cause the host

machine to not give credit for a note which has been stored by the validator.

7.4 POLL DELAY

It is important that the delay between polls is no less than 200ms, no greater than

1000ms. The upper limit is set in place in order to stop the event list reported back from a

poll command becoming too large, the minimum limit is to avoid the processor being

interrupted too often during an operation such as a note read.

7.5 HANDLING EVENTS THAT REQUIRE MORE DATA

If a poll event is returned and it requires more information to process the response, it is not

advisable to use the same command structure to send an additional command as the

response could overwrite the ResponseData that is not yet parsed.

For example, a credit event is received and the program needs to send a ‘Get Serial

Number’ command to verify the serial of the unit before the credit is given to the consumer.

The recommended method of doing this is to have a set of state variables that surround the

loop iterating across the response from the poll command. As each response is

encountered, if further action is required a flag is set and any additional data (such as

channel of credit) is stored. After the complete poll response has been parsed, a set of

conditional statements check the state of the flags and perform any additional operations.

NOTE

Devices will disable if no command is received (including a poll) for 10 seconds (SMART

Hopper 5 seconds), a regular poll loop will prevent this from happening.

CRITICAL NOTE

It is essential that the first poll sent to a device on startup is handled correctly as it could

include events like incomplete payout with the data of the previous operation.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 28

8 ITL DEVICES SSP OPERATION

This section outlines the operations and recommended flow of commands (and responses)

for each of the categories of Innovative Technology LTD. devices.

In the flows below, green boxes are commands sent from the host and cyan boxes indicate

a response from an ITL device. The contents of the packet are shown in square brackets.

For example, this demonstrates the host setting the inhibits of a validator and the device

responding with the OK message.

8.1 GENERIC COMMANDS

Every peripheral using SSP to communicate must support the following commands. Any

extensions to the commands or responses that are specific to each device are detailed in

the relevant section.

RESET (0X01)

Poll [07]

OK [F0]

Reset [01]

OK [F0]

Close port, wait until the Hopper has had a chance to reset and open port.

OK [F0]

Sync [11]

OK, Slave Reset, Disabled

[F0][F1][F8]

Poll [07]

Exchange keys, set protocol level, setup request, get levels and enable.

Sync [11]

Sync [11]

Set Inhibits [02] [FF FF]

OK [F0]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 29

SET HOST PROTOCOL VERSION (0X06)

SSP support the notion of protocol versions. This is to allow development of the protocol in

new versions of firmware with support for extra poll responses and data bytes whilst

enabling existing software to not receive the extra data until it has been updated.

The protocol version is raised each time additional data is reported as a response to a

command or a new poll response is included. A table is provided in the appendix detailing

the firmware versions and date each protocol version was introduced for each product.

Adding additional commands to the specification will not prompt a raise in the protocol

version as the host will not send these commands if the software has been developed

without them.

This command sets the protocol version to be used for communication and the device will

respond OK (0xF0) if the protocol version is supported, if it is not supported a generic Fail

(0xF8) response will be given.

Host software should be written to interface using a specific protocol version and

peripherals that do not support the protocol version should be rejected by the host software

until the firmware is updated to provide the correct protocol version.

POLL (0X07)

The poll command is essential to the operation of the device and it is absolutely critical that

the responses to the poll command are handled correctly at all times. The response to Poll

(0x07) is a buffered list of events that have occurred since the last time a poll command

was responded to.

The events that are reported in response to a poll command are specific to each device

type. Please see the relevant sections for details of the events that can be returned and

how to handle them.

REQUEST SERIAL NUMBER (0X0C)

Request Serial Number [0C]
OK, & Serial [F0] [00 29 8A A6]

Serial is 0x00298AA6 = 2722470 decimal.

OK, Slave Reset, Disabled

[F0][F1][F8]

Poll [07]

Host Protocol Version, version 8

[06] [08]
Fail [F8]

Host Protocol Version, version 7

[06] [07]
OK [F0]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 30

SYNCRONISATION (0X11)

The synchronisation (or sync) command resets the sync bit that makes up part of the

seq/slave ID field. The next packet should have a seq bit of 0; this is handled transparently

by the libraries and DLLs.

It is commonly used to detect when a device is present and available for communication. At

the beginning of communication after opening the port, the first command should always

be Sync and the host should wait for an OK (0xF0) response before any other commands

are sent.

DISABLE (0X09)

Switches the device to its disabled state.

ENABLE (0X0A)

Switches the device to its disabled state.

If the device is jammed, it may return generic response Command Cannot be Processed

(0xF5) instead of OK.

PROGRAM FIRMWARE/DATASET (0X0B)

This command allows the unit’s firmware and note data to be updated by the host.

Additional documentation covers this procedure. Contact your local support office for more

details.

Enable [0A]
Command Cannot Be Processed

[F5]

Enable [0A]

OK [F0]

Disable [09]

OK [F0]

OK [F0]

Sync [11]

Sync [11]

Sync [11]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 31

GET FIRMWARE VERSION (0X20)

Returns the full string detailing the current firmware installed in the device.

The firmware code is broken down as follows:

Returned Reading Meaning

NV0200 NV200 Product

414 4.14 Firmware version (Major.Minor)

1498 1498 Release ID

000 000 For internal use

GET DATASET VERSION (0X21)

Returns the full string detailing the current dataset (note/bill data) installed in the device.

Returned Reading Meaning

EUR Euro Country code (ISO 4217)

01 1 Arrangement of dataset, each code has different notes

or channel arrangements. See website for details.

6 NV200 Product code for dataset

09 v9 Version number, increased if notes are added,

withdrawn or updated.

MANUFACTURERS EXTENSION (0X30)

This command is used exclusively for extensions to the protocol that are undocumented

and generally unsupported. It should only be used if instructed specificly by Innovative

Technology LTD.

Get Dataset Version [21]
OK, EUR01609

 [F0] [45 55 52 30 31 36 30 39]

Get Firmware Version [20]
OK, NV02004141498000

 [F0] [4E 56 30 32 30 30 34 31

34 31 34 39 38 30 30 30]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 32

8.2 GENERIC RESPONSES

The following set of responses can be returned from commands. Depending on the device

and response additional data can be provided along with the response to give further detail.

This is detailed alongside the commands in section 9.

On receiving a response from a device, the first byte should always be checked for an OK

(0xF0) response before continuing. If any other response is received it should be acted on

accordingly.

OK (0XF0)

OK is the first byte returned in the response to a successful command. It does not indicate

that the command has completed, just that it has been received and understood.

COMMAND NOT KNOWN (0XF2)

Returned when an invalid command is received by a peripheral. Check the firmware is up to

date and the protocol level is set correctly.

WRONG NUMBER OF PARAMETERS (0XF3)

Indicates the command was received by the device but the parameters provided with the

command did not match what the device was expecting.

Check the specification to ensure the arguments provided with the command were valid

and that the correct protocol version is being used.

PARAMETER OUT OF RANGE (0XF4)

Indicates the command was received by the device but the parameters provided with the

command were out of available range. Examples of this are providing a non-prime number

to set generator command (0x4A).

COMMAND CANNOT BE PROCESSED (0XF5)

A command sent could not be processed at that time. This response can have an additional

byte giving the reason the command cannot be processed. Check individual device

command details for details An example of this is asking a Hopper to payout whilst it is

already dispensing coins.

Check the poll response for the state of the device and retry the command when the device

is enabled and not busy.

SOFTWARE ERROR (0XF6)

Reported for errors in the execution of software e.g. Divide by zero. This may also be

reported if there is a problem resulting from a failed remote firmware upgrade, in this case

the firmware upgrade should be redone.

FAIL (0XF8)

Used if none of the other error conditions are applicable or as detailed in command

documentation. An example is setting protocol version to a number greater than that

supported by the device.

KEY NOT SET (0XFA)

The slave is in encrypted communication mode but the encryption keys have not been

negotiated.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 33

Sync to establish

presence of validator

Negotiate encryption

Poll

Handle poll response

Enable Validator

Set Protocol Version

Setup Request

Set Channel Inhibits

8.3 BANK NOTE VALIDATOR

OVERVIEW OF OPERATION

This flow outlines the blocks that make up the fundamental operation of a note validator.

NOTE

It may be beneficial to send a poll command immediately

before the Enable command in order to process any events

which may be left in the poll queue. It is possible that the host

may not want to Enable the device based on what it receives in

this Poll response.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 34

SYNC AND KEY NEGOTIATION

The only possible response to a synchronisation command is OK (0xF0).

If a prime number is not provided as the generator or modulus the device will respond with

Parameter Out Of Range (0xF4). If it was not possible to create the key, the device will

respond with Fail (0xF8).

If the wrong key is used to encrypt a command, the device will respond with Key Not Set

(0xFA). This will also be the response to all standard commands if encryption is forced on

the unit and a key has not yet been exchanged.

Open COM Port

Set SSP_COMMAND EncryptionStatus to FALSE

Sync [11]

OK [F0]

Set Generator

[4A] [25 94 05 7B 00 00 00 00]

OK [F0]

Setup 64bit prime numbers for generator and modulus

Set Modulus

[4B] [6B FB 8B 06 00 00 00 00]

OK [F0]

Request Key Exchange

[4C] [6C AA 70 04 00 00 00 00]

OK & Device Inter Key

[F0] [D5 6D 2F 04 00 00 00 00]

Create the full encryption key

Set SSP_COMMAND EncryptionStatus to TRUE to enable eSSP

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 35

SETUP AND ENABLE VALIDATOR

This will enable acceptance of all notes in the dataset.

Host Protocol Version [06] [06]

OK [F0]

Parse setup request

00 = Unit Type (Note Validator)

30 33 33 33 = Firmware (3.33)

45 55 52 = Country Code (EUR)

00 00 01 = Value Multiplier (1)

04 = Number of channels (4)

05 0A 14 32 = Channel Value for

older protocol version – ignore for v6.

02 02 02 02 = Channel Security for

older protocol version – ignore for v6

00 00 64 = Real Value Multiplier (100)

06 = Protocol Version(6)

45 55 52 (repeated x 4) = Currency Code

for each channel (EUR)

05 00 00 00 = Value of Ch1 (5)

0A 00 00 00 = Value of Ch2 (10)

14 00 00 00 = Value of Ch3 (20)

32 00 00 00 = Value of Ch4 (50)

Setup Request [05]
OK & Setup Data [F0]

[00 30 33 33 35 45 55 52

00 00 01 04 05 0A 14 32

02 02 02 02 00 00 64 06

45 55 52 45 55 52

45 55 52 45 55 52

05 00 00 00

0A 00 00 00

14 00 00 00

 32 00 00 00]

Set Inhibits [02] [FF FF]

OK [F0]

Enable [0A]

OK [F0]

Validator now able to accept notes

Poll [07]

OK, Reset & Disabled [F0] [F1 E8]

If poll response is anything other than F1 (reset), E8 (disabled) & F0 (OK)

Handle poll response before enabling.

Software should poll device for events

Request Serial Number [0C]
OK, & Serial [F0] [00 29 8A A6]

Store serial number for later checks

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 36

If the value provided with Set Host Protocol version is not supported by the device, the

device will respond Fail (0xF8). If it responds with OK (0xF0) the protocol version is

supported and will be used on the device. After startup (or a reset), it is recommended that

the protocol level is always set as the first command sent after the key exchange has taken

place. This will ensure no events are missed. If a device does not support the protocol

version the host expects to use it is a critical error and the host should reject the device

until the firmware is updated or the device changed.

If not enough arguments are passed with Set Inhibits, it will respond with Wrong Number Of

Parameters (0xF3). If OK (0xF0) is returned, the inhibit mask will be used.

ACCEPT NOTE

Poll [07]

OK [F0]

Poll [07]

OK & Read Ch 0 [F0] [EF 00]

Poll [07]

OK & Stacked [F0] [EB]

Poll [07]

OK [F0]

The note is now secure, it cannot be returned to the customer

For additional security, the host could request the serial number of the validator

and compare it with the serial stored on startup before giving credit.

Poll [07]

OK & Stacking [F0] [CC]

Next command directs how the note is handled:

0x07 – Poll – Accept Note

0x18 – Hold – Keep the note in escrow position (for 5 seconds longer)

0x08 – Reject – Return the note to the bezel

Poll [07]

OK & Note Read Ch 3 [F0] [EF 03]

Poll (Accept Note) [07]

OK [F0]

Poll [07]

OK & Stacking [F0] [CC]

Poll [07]

OK & Stacking [F0] [CC]

Poll [07]
OK, Credit Ch. 3 & Stacking

[F0] [EE 03 CC]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 37

HOLD NOTE

If no command is sent to the validator for 5 seconds, the validator will return any note in

the note path and inhibit itself as a security mechanism. This includes when a note is in the

escrow position waiting for the host to accept or reject the note. To allow the note to remain

in the escrow position longer than 5 seconds, send the Hold command (0x18) instead of

Poll (0x07).

If there is not a note in the escrow position and the host sends Hold command (0x18) the

device will respond with Command Cannot Be Processed (0xF5).

Poll [07]

OK [F0]

Poll [07]

OK & Read Ch 0 [F0] [EF 00]

Next command directs how the note is handled:

0x07 – Poll – Accept Note

0x18 – Hold – Keep the note in escrow position (for 5 seconds longer)

0x08 – Reject – Return the note to the bezel

Poll [07]

OK & Note Read Ch 3 [F0] [EF 03]

Hold [18]

OK [F0]

Poll [07]

OK & Stacked [F0] [EB]

Poll [07]

OK [F0]

Poll [07]

OK & Stacking [F0] [CC]

Poll (Accept) [07]

OK & Stacking [F0] [CC]

Poll [07]
OK, Credit Ch. 3 & Stacking

[F0] [EE 03 CC]

Hold [18]

OK [F0]

Hold [18]

OK [F0]

Hold [18]

OK [F0]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 38

REJECT NOTE

If there is not a note in the escrow position and the host sends Reject command (0x08) the

device will respond with Command Cannot Be Processed (0xF5).

All reject codes are detailed in Appendix.

Poll [07]

OK [F0]

Poll [07]

OK & Read Ch 0 [F0] [EF 00]

Poll [07]

OK [F0]

Next command directs how the note is handled:

0x07 – Poll – Accept Note

0x18 – Hold – Keep the note in escrow position (for 5 seconds longer)

0x08 – Reject – Return the note to the bezel

Poll [07]

OK & Note Read Ch 3 [F0] [EF 03]

Reject [08]

OK [F0]

Poll [07]

OK & Rejecting [F0] [ED]

Poll [07]

OK & Rejecting [F0] [ED]

Poll [07]

OK & Rejected [F0] [EC]

Get Last Reject Code [17]

OK & Rejected By Host [F0] [08]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 39

VALIDATOR REJECTS NOTE

Poll [07]

OK [F0]

Poll [07]

OK & Read Ch 0 [F0] [EF 00]

Poll [07]

OK [F0]

Poll [07]

OK & Read Ch 0 [F0] [EF 00]

Poll (Accept Note) [07]

OK & Rejecting [F0] [ED]

Poll [07]

OK & Rejecting [F0] [ED]

Poll [07]

OK & Rejected [F0] [EC]

Get Last Reject Code [17]

OK & Validation Fail [F0] [04]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 40

SAFE JAM

The note is past the point it cannot be retrieved by the customer however there has been a

jam and the process could not complete.

It is usually safe to give the credit in this case, however by default no credit event (0xEE) is

reported.

Poll [07]

OK [F0]

Poll [07]

OK & Read Ch 0 [F0] [EF 00]

Poll [07]

OK [F0]

Remove power, separate validator and clear jam.

Reconnect power and redo sync, key exchange and initialisation.

Poll [07]

OK & Note Read Ch 3 [F0] [EF 03]

Poll (Accept Note) [07]

OK [F0]

Poll [07]

OK & Stacking [F0] [CC]

Poll [07]

Poll [07]

OK, Safe Jam & Disabled

[F0] [EA E8]

OK, Safe Jam & Disabled

[F0] [EA E8]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 41

UNSAFE JAM

An unsafe jam is where the note is not securely in the cashbox and is jammed in the note

path. It can happen at any time during the reading process, the example below is just one

case, the events might not necessarily be in this order if it gets jammed sooner or later.

It the case of unsafe jam it is not usually advisable to give credit as it is not guaranteed the

note is secure and cannot be retrieved.

Poll [07]

OK [F0]

Poll [07]

OK & Read Ch 0 [F0] [EF 00]

Poll [07]

OK [F0]

Remove power, separate validator and clear jam.

Reconnect power and redo sync, key exchange and initialisation.

Poll [07]

OK & Note Read Ch 3 [F0] [EF 03]

Poll (Accept Note) [07]

OK [F0]

Poll [07]

OK & Stacking [F0] [CC]

Poll [07]

Poll [07]

OK Unsafe Jam & Disabled

[F0] [CC E8]

OK Unsafe Jam & Disabled

[F0] [CC E8]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 42

STACKER FULL

Returned as part of the stacking process during note reads when the cashbox is full.

The validator will not accept any more notes until the cashbox has been emptied and

validator reset.

Poll [07]

OK [F0]

Poll [07]

OK & Read Ch 0 [F0] [EF 00]

Poll [07]

OK

Poll [07]

OK & Cashbox Full [F0] [E7]

Poll [07]

OK & Note Read Ch 3 [F0] [EF 03]

Poll (Accept Note) [07]

OK [F0]

Poll [07]

OK & Stacking [F0] [CC]

Poll [07]

OK & Stacking [F0] [CC]

Poll [07]
OK, Credit Ch. 3, Stacking,

Stacked & Cashbox Full

[F0] [EE 03 CC EB E7]

Empty cashbox and reset validator.

Synchronise, key exchange and initialisation.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 43

FRAUD ATTEMPT

During the note transport and stacking process if the validator detects a potential fraud

event no credit event will be given, instead 0xEB will be reported with the channel that was

being stacked at the time.

When a fraud attempt is seen as part of the note reading process it is usually because the

validator has detected something is not as it should be. It is recommended that they are

always logged as part of the host security log.

A single fraud attempt can usually be ignored as an anomaly and the credit given however

if multiple fraud attempts are seen in a short space of time then the validator should be

disabled until an attendant or service personnel can investigate; either:

 A manipulation is being performed on the validator and it should be disabled to

prevent any further manipulation. If an attendant is on-site they should be called to

investigate.

 The validator is faulty and reporting false fraud attempts. In this case disable the

validator to prevent further alerts and errors. Contact your nearest authorised

service centre.

Poll [07]

OK [F0]

Poll [07]

OK & Read Ch 0 [F0] [EF 00]

Poll [07]

OK & Stacked [F0] [EB]

Poll [07]

OK [F0]

Poll [07]

OK & Stacking [F0] [CC]

Poll [07]

OK & Note Read Ch 3 [F0] [EF 03]

Poll (Accept Note) [07]

OK [F0]

Poll [07]

OK & Stacking [F0] [CC]

Poll [07]

OK & Stacking [F0] [CC]

Poll [07]
OK, Fraud Ch. 3 & Stacking

[F0] [E6 03 CC]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 44

Sync to establish

presence of validator

Negotiate encryption

Set Routing

Poll

Handle poll response

Enable Validator

Enable Payout

Set Protocol Version

Setup Request

Dispense/Stack Notes

Empty

Set Channel Inhibits

Get Note Positions

Get Note Positions

Get Note Positions

NOTE

It may be beneficial to send a poll command immediately

before the Enable command in order to process any events

which may be left in the poll queue. It is possible that the host

may not want to Enable the device based on what it receives in

this Poll response.

8.4 NV11

OVERVIEW OF OPERATION

This flow outlines the blocks that make up the fundamental operation of the NV11.

The blocks and responses detailed in the bill validator section are common to the NV11 as

well. The processed detailed below are in addition and relate to the recycling of notes.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 45

ROUTING NOTES

The available notes can be retrieved using the Setup Request command during the initial

setup. It is advisable to set the routing of all the notes at startup so the validator is in a

known state.

In this case we have a Euro dataset programmed in the NV11:

Channel 1 = EUR 5

Channel 2 = EUR 10

Channel 3 = EUR 20

Channel 4 = EUR 50

The example below routes the EUR5 & EUR10 notes to the recycler and the EUR20 &

EUR50 notes to the stacker.

 If the Note Float is not detected as connected a Command Cannot Be Processed

(0xF5) will be returned.

 If the value and currency passed is not in the dataset Parameter Out Of Range

(0xF4) will be returned.

 If the command was sent unencrypted then Parameter Out Of Range (0xF4) will be

returned.

GET ROUTING

The routing of each note can be confirmed using the get routing command.

 If the Note Float is not detected as connected a Command Cannot Be Processed

(0xF5) will be returned.

 If the value and currency passed is not in the dataset Parameter Out Of Range

(0xF4) will be returned.

 If the command was sent unencrypted then Parameter Out Of Range (0xF4) will be

returned.

Get Routing, 5.00 EUR

[3B] [F4 01 00 00 45 55 52]

OK, Recycler [F0] [00]

Set Routing, Recycler, 5.00 EUR

[3B] [00] [F4 01 00 00 45 55 52]

OK [F0]

Routing can be to recycler for storage to be paid/stacked later (route = 0)

or to cashbox/stacker (route = 1).

Set Routing, Recycler, 10.00 EUR

[3B] [00] [E8 03 00 00 45 55 52]

OK [F0]

Set Routing, Stacker, 20.00 EUR

[3B] [01] [D0 07 00 00 45 55 52]

OK [F0]

Set Routing, Stacker, 50.00 EUR

[3B] [01] [88 13 00 00 45 55 52]

OK [F0]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 46

ENABLE PAYOUT

Enables the recycler unit for payout, stacking and storage.

 If 0xF0 is returned, the recycler is enabled.

 If 0xF5 (command cannot be processed) is returned, an error code will follow. See

the relevant command in section 9.2 for more details on these codes.

o 0x01 No Note Float connected

o 0x02 Invalid Currency

o 0x03 Device busy

o 0x04 Empty only

o 0x05 Note float device error

 If the command was sent unencrypted then Parameter Out Of Range (0xF4) will be

returned.

DISABLE PAYOUT

Disables the recycler unit from payout, stacking and storage.

All inserted notes will be stacked upon acceptance.

 If 0xF5 (command cannot be processed) is returned, an error code will follow. See

the relevant command in section 9.2 for more details on these codes.

o 0x01 No Note Float connected

o 0x03 Device busy

 If the command was sent unencrypted then Parameter Out Of Range (0xF4) will be

returned.

Enable Payout, Options [5C] [01]

OK [F0]

Options for the configuration of the payout can be set as it is enabled. These

options are set as a bit register. Currently only one option is available which is

to receive the value of the note stored with the stored poll response. This is

enabled by setting the Least Significant Bit to 1.

Disable Payout [5B]

OK [F0]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 47

GET NOTE POSITIONS

Used to get the value of each of the notes in the recycler.

This command should be used

 During setup to know what is stored in the recycler and available for payout.

 Before any stack/dispense commands are sent to confirm the note to be

dispensed.

 After any storage procedure to obtain an updated list of notes in the recycler.

 If 0xF5 (command cannot be processed) is returned, an error code will follow. See

the relevant command in section 9.2 for more details on these codes.

o 0x01 No Note Float connected or Note Float error

o 0x03 Device busy

Get Note Positions [41]

OK, 3 Notes,

5.00,

10.00,

10.00.

[F0] [03]

[F4 01 00 00]

[E8 03 00 00]

[E8 03 00 00]

Note: The first available note is represented by the LAST note listed in the

response to this command. In this case a EUR10 note would be dispensed,

followed by another EUR10 and finally an EUR5 note.

Note: When using a mixed currency dataset, it is advised that channel number

reporting type is used – see command 0x45. This is due to only the value being

reported and not the currency. This is illustrated below.

Get Note Positions [41]

OK, 3 Notes,

Ch1, Ch2, Ch2

[F0] [03]

[01] [02] [02]

Set Value Reporting Type,

By Channel [45] [01]

OK [F0]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 48

DISPENSING NOTES

* One Note in this context denotes that the data for one note follows, for parsing purposes.

It does not directly denote the number of notes being dispensed.

Poll [07]

OK [F0]

Dispense Note [42]

OK [F0]

Poll [07]
OK, Dispensing, 1 Note*,

0EUR, Disabled [F0]

[DA] [01] [00 00 00 00 45 55 52]

 [E8]

Poll [07]
OK, Disabled, Dispensing,

1 Note*, 0EUR [F0] [E8]

[DA] [01] [00 00 00 00 45 55 52]

Poll [07]
OK, Disabled, Dispensing,

1 Note*, 500 EUR

[F0] [E8]

[DA] [01] [F4 01 00 00 45 55 52]

The value will be 0 until the note has passed out of the Note float

and into a payable position in the validator.

Poll [07]
OK, Disabled,

Dispensing, 1 Note*, 500 EUR

Note In Bezel, 1 Note*, 500 EUR

[F0] [E8]

[DA] [01] [F4 01 00 00 45 55 52]

[CE] [01] [F4 01 00 00 45 55 52]

 [E8] Poll [07]

OK, Disabled,

Note In Bezel, 1 Note*, 500 EUR

[F0] [E8]

[CE] [01] [F4 01 00 00 45 55 52]

Poll [07]

OK, Disabled,

Dispensed, 1 Note*, 500 EUR

[F0] [E8]

[D2] [01] [F4 01 00 00 45 55 52]

Persistent until note is removed from bezel by customer.

Get Note Positions [41]
OK, 2 Notes,

10.00, 5.00,

[F0] [02]

[E8 03 00 00] [F4 01 00 00]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 49

The device will respond to Dispense Note command (0x42) with OK (0xF0) if there are no

problems. Alternatively the following responses could be received:

 0xF5 (command cannot be processed) is returned, an error code will follow. See

the relevant command in section 9.2 for more details on these codes.

o 0x01

 No Note Float connected

 The validator has a dataset installed that does not match that of

the notes stored in the recycler.

 Note Float error

o 0x02 Note Float Empty

o 0x03 Payout Busy

o 0x04 Note Float Disabled

STACKING NOTES

The device will respond to Stack Note command (0x43) with OK (0xF0) if there are no

problems. Alternatively the following responses could be received:

 0xF5 (command cannot be processed) is returned, an error code will follow. See

the relevant command in section 9.2 for more details on these codes.

o 0x01

 No Note Float connected

 The validator has a dataset installed that does not match that of

the notes stored in the recycler.

 Note Float error

o 0x02 Note Float Empty

o 0x03 Payout Busy

o 0x04 Note Float Disabled

Poll [07]

OK [F0]

Stack Note [43]

OK [F0]

Poll [07]
OK, Stacking, Disabled

[F0] [CC] [E8]

Poll [07]
OK, Disabled, Stacking

[F0] [E8] [CC]

Poll [07]
OK, Disabled, Note Transferred to

Stacker,

1 Note*, 5.00 EUR

[F0] [E8]

[C9] [01] [F4 01 00 00 45 55 52]

Get Note Positions [41]
OK, 2 Notes,

10.00, 5.00,

[F0] [02]

[E8 03 00 00] [F4 01 00 00]

Poll [07]

OK [F0]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 50

NOTE TRANSPORT ERROR DURING DISPENSE

Poll [07]

OK [F0]

Dispense Note [42]

OK [F0]

Poll [07]
OK, Dispensing, 1 Note*,

0EUR, Disabled [F0]

[DA] [01] [00 00 00 00 45 55 52]

 [E8]

Poll [07]
OK, Disabled, Dispensing,

1 Note*, 0EUR [F0] [E8]

[DA] [01] [00 00 00 00 45 55 52]

Poll [07]
OK, Disabled, Jammed,

1 Note*, 0 EUR

[F0] [E8]

[D5] [01] [00 00 00 00 45 55 52]

Persistent until validator is powered down and note is removed from note path.

Get Note Positions [41]
OK, 2 Notes,

10.00, 5.00,

[F0] [02]

[E8 03 00 00] [F4 01 00 00]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 51

EMPTY RECYCLER

The device will respond to Empty command (0x3F) with OK (0xF0) if there are no problems.

Alternatively the following responses could be received:

 0xF5 (command cannot be processed) is returned, an error code will follow. See

the relevant command in section 9.2 for more details on these codes.

o 0x01

 No Note Float connected

 Note Float error

o 0x02 Note Float Empty

o 0x03 Payout Busy

o 0x04 Note Float Disabled

 If the command was sent unencrypted then Parameter Out Of Range (0xF4) will be

returned.

Poll [07]

OK [F0]

Empty Recycler [3F]

OK [F0]

Poll [07]
OK, Emptying, Disabled

[F0] [C2] [E8]

Poll [07]
OK, Disabled, Emptying

[F0] [E8] [C2]

Get Note Positions [41]
OK, 2 Notes,

10.00, 5.00,

[F0] [02]

[E8 03 00 00] [F4 01 00 00]

Poll [07]
OK, Empty, Disabled

[F0] [C3] [E8]

Get Note Positions [41]
OK, 0 Notes,

[F0] [00]

Enable [0A]
OK [F0]

Poll [07]
OK [F0]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 52

Sync to establish

presence of validator

Negotiate encryption

Set Routing

Poll

Handle poll response

Enable Validator

Enable Payout

Set Protocol Version

Setup Request

Dispense/Float Amount

Empty

Set Channel Inhibits

Get All Levels

NOTE

It may be beneficial to send a poll command immediately

before the Enable command in order to process any events

which may be left in the poll queue. It is possible that the host

may not want to Enable the device based on what it receives in

this Poll response.

8.5 SMART PAYOUT

OVERVIEW OF OPERATION

This flow outlines the blocks that make up the fundamental operation of a SMART Payout.

The blocks and responses detailed in the bill validator section are common to the SMART

Payout as well. The processed detailed below are in addition and relate to the recycling of

notes in the SMART Payout.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 53

ROUTING NOTES

The available notes can be retrieved using the Setup Request command during the initial

setup. It is advisable to set the routing of all the notes at startup so the validator is in a

known state.

In this case we have a Euro dataset programmed in the NV200:

Channel 1 = EUR 5

Channel 2 = EUR 10

Channel 3 = EUR 20

Channel 4 = EUR 50

The example below routes the EUR5, EUR10 & EUR20 notes to the recycler and the EUR50

notes to the stacker.

 If the Payout is not detected as connected a Command Cannot Be Processed

(0xF5) will be returned.

 If the value and currency passed is not in the dataset Parameter Out Of Range

(0xF4) will be returned.

 If the command was sent unencrypted then Parameter Out Of Range (0xF4) will be

returned.

GET ROUTING

The routing of each note can be confirmed using the get routing command.

 If the Payout is not detected as connected a Command Cannot Be Processed

(0xF5) will be returned.

 If the value and currency passed is not in the dataset Parameter Out Of Range

(0xF4) will be returned.

 If the command was sent unencrypted then Parameter Out Of Range (0xF4) will be

returned.

Get Routing, 5.00 EUR

[3B] [F4 01 00 00 45 55 52]

OK, Recycler [F0] [00]

Set Routing, Recycler, 5.00 EUR

[3B] [00] [F4 01 00 00 45 55 52]

OK [F0]

Routing can be to recycler for storage to be paid/stacked later (route = 0)

or to cashbox/stacker (route = 1).

Set Routing, Recycler, 10.00 EUR

[3B] [00] [E8 03 00 00 45 55 52]

OK [F0]

Set Routing, Recycler, 20.00 EUR

[3B] [00] [D0 07 00 00 45 55 52]

OK [F0]

Set Routing, Stacker, 50.00 EUR

[3B] [01] [88 13 00 00 45 55 52]

OK [F0]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 54

ENABLE PAYOUT

Enables the recycler unit for payout, stacking and storage.

 If 0xF0 is returned, the recycler is enabled.

 If 0xF5 (command cannot be processed) is returned, an error code will follow. See

the relevant command in section 9.3 for more details on these codes.

o 0x01 No Payout connected

o 0x02 Invalid Currency

o 0x03 Device busy

 If the command was sent unencrypted then Parameter Out Of Range (0xF4) will be

returned.

DISABLE PAYOUT

Disables the recycler unit from payout, stacking and storage.

All inserted notes will be stacked upon acceptance.

 If 0xF5 (command cannot be processed) is returned, an error code will follow. See

the relevant command in section 9.3 for more details on these codes.

o 0x01 No Note Float connected

o 0x03 Device busy

 If the command was sent unencrypted then Parameter Out Of Range (0xF4) will be

returned.

Enable Payout, Options [5C] [01]

OK [F0]

Options for the configuration of the payout can be set as it is enabled. These

options are set as a bit register. Currently only one option is available which is

to receive the value of the note stored with the stored poll response. This is

enabled by setting the Least Significant Bit to 1.

Disable Payout [5B]

OK [F0]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 55

GET NOTE AMOUNT

There are 2 commands available to obtain the levels of the notes stored inside the SMART

Payout.

Each denomination can individually be queried using Get Note Amount command (0x35).

To get levels for all notes stored this needs to be sent as many time as there are

denominations in the dataset (as detailed in the response of Setup Request).

The levels of all the notes in the dataset can be retrieved using the Get All Levels command

(0x22). This command returns the levels of all denominations in the dataset programmed

in the SMART Payout, along with the value and currency of the denomination.

This is typically more efficient than sending individual level requests.

For both of the level commands detailed above, if the first byte of the response is not OK

(0xF0) the possible error conditions are as follows.

 If the Payout is not detected as connected a Command Cannot Be Processed

(0xF5) will be returned.

 If the payout is busy, Command Cannot Be Processed (0xF5) will be returned with

an addition byte 0x03.

OK, 3 Notes

[F0] [03 00]

Get Note Amount, 5.00 EUR

[35][F4 01 00 00][45 55 52]

OK, 2 Notes

[F0] [02 00]

Get Note Amount, 10.00

[35][E8 03 00 00][45 55 52]

OK, 7 Denominations

3 x 5.00 EUR,

2 x 10.00 EUR,

5 x 20.00 EUR,

0 x 50.00 EUR,

0 x 100.00 EUR,

0 x 200.00 EUR,

0 x 500.00 EUR

[F0] [07]

[03 00] [F4 01 00 00] [45 55 52]

[02 00] [E8 03 00 00] [45 55 52]

[05 00] [D0 07 00 00] [45 55 52]

[00 00] [88 13 00 00] [45 55 52]

[00 00] [10 27 00 00] [45 55 52]

[00 00] [20 4E 00 00] [45 55 52]

[00 00] [50 C3 00 00] [45 55 52]

Get All Levels [22]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 56

DISPENSING NOTES - PAYOUT

There are two methods to dispense notes. This example details Payout (command 0x33)

which allows the Payout to decide which notes to payout based on options set within the

device (command 0x50).

See error conditions section below for alternative responses.

Payout, 30.00 EUR, Not Test

[33][B8 0B 00 00][45 55 52][58]

OK [F0]

The final byte specifies if this is a test payout (0x19) or a real payout (0x58).

Poll [07]
OK, Dispensing, 1 Currency,

Dispensed 0.00 EUR, Disabled

[F0][DA][01][00 00 00 00][45 55 52][E8]

Poll [07]
OK, Dispensing, 1 Currency,

Dispensed 20.00 EUR, Disabled,

Note Held In Bezel 20.00 EUR

[F0][DA][01][D0 07 00 00][45 55 52]

[E8][CE][D0 07 00 00][45 55 52]

Poll [07]
OK, Dispensing, 1 Currency,

Dispensed 20.00 EUR, Disabled

[F0][DA][01][D0 07 00 00][45 55 52][E8]

Poll [07]

OK, Dispensing, 1 Currency,

Dispensed 30.00 EUR, Disabled

[F0][DA][01][B8 0B 00 00][45 55 52][E8]

It is recommended to use the Get Levels command to

update the new levels of notes in the host software.

OK [F0]

Poll [07]

Poll [07]
OK, Dispensing, 1 Currency,

Dispensed 30.00 EUR, Disabled,

Note Held In Bezel 10.00 EUR

[F0][DA][01][B8 0B 00 00][45 55 52]

[E8][CE][E8 03 00 00][45 55 52]

Poll [07]

OK, Dispensed, 1 Currency,

30.00 EUR, Disabled

[F0][D2][01][B8 0B 00 00][45 55 52][E8]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 57

DISPENSING NOTES - PAYOUT BY DENOMINATION

There are two methods to dispense notes. This example details Payout by Denomination

(command 0x46) which allows the user to specify exactly which notes are paid out. This

example pays 2 x €5, 1 x €20 notes.

Payout by denomination,

2 denominations

1 x 5.00 EUR, 1 x 20.00 EUR, Not

Test

[46] [02]

[01 00][F4 01 00 00][45 55 52]

[01 00][E8 03 00 00][45 55 52]

[58]

OK [F0]

The final byte specifies if this is a test payout (0x19) or a real payout (0x58).

Poll [07]
OK, Dispensing, 1 Currency,

Dispensed 0.00 EUR, Disabled

[F0][DA][01][00 00 00 00][45 55 52][E8]

Poll [07]
OK, Dispensing, 1 Currency,

Dispensed 20.00 EUR, Disabled,

Note Held In Bezel 20.00 EUR

[F0][DA][01][D0 07 00 00][45 55 52]

[E8][CE][D0 07 00 00][45 55 52]

Poll [07]
OK, Dispensing, 1 Currency,

Dispensed 20.00 EUR, Disabled

[F0][DA][01][D0 07 00 00][45 55 52][E8]

OK, Dispensing, 1 Currency,

Dispensed 25.00 EUR, Disabled

[F0][DA][01][C4 09 00 00][45 55 52][E8]

It is recommended to use the Get Levels command to

update the new levels of notes in the host software.

Poll [07]
OK, Dispensing, 1 Currency,

Dispensed 25.00 EUR, Disabled,

Note Held In Bezel 5.00 EUR

[F0][DA][01][C4 09 00 00][45 55 52]

[E8][CE][E8 03 00 00][45 55 52]

Poll [07]

OK, Dispensed, 1 Currency,

25.00 EUR, Disabled

[F0][D2][01][C4 09 00 00][45 55 52][E8]

Poll [07]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 58

PAYOUT – ERROR CONDITIONS

The device will respond to Payout command (0x33) and Payout By Denomination

command (0x46) with OK (0xF0) if there are no problems. Alternatively the following

responses could be received:

 0xF5 (command cannot be processed) is returned, an error code will follow. See

the relevant command in section 9.3 for more details on these codes.

o No additional byte

 No Payout connected

o 0x01

 The validator has a dataset installed that does not match that of

the notes stored in the recycler.

 Payout error

o 0x02 Can’t pay exact value requested (request is higher than stored value

or the value cannot be broken down with the notes available e.g. asking

for €15 when no €5 notes are stored).

o 0x03 Payout Busy

o 0x04 Payout Disabled

 If the command was sent unencrypted then Parameter Out Of Range (0xF4) will be

returned.

 If a non-valid currency code is given Parameter Out Of Range (0xF4) could be

returned.

The test byte at the end of the payout command can be used in advance of actually issuing

the payout command to check if the payout will be able to succeed.

Payout, 150.00 EUR, Test

[33][98 3A 00 00][45 55 52][19] Command Cannot Be Processed,

Disabled

 [F0] [04]

OK, Disabled [F0] [F8]

Poll [07]

OK, Disabled [F0] [F8]

Poll [07]

OK, Disabled [F0] [F8]

Enable [0A]

OK, [F0]

Poll [07]

Payout, 150.00 EUR, Not Test

[33][98 3A 00 00][45 55 52][58]

OK [F0]

OK [F0]

Poll [07]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 59

FLOAT OPERATION - FLOAT

Floating routes notes to the cashbox/stacker and at end of the operation the SMART

Payout should contain the number/value of notes specified. As with dispense, there are two

methods to float notes. This example details Float (command 0x3D) which allows the

Payout to decide which notes to float based on options set within the device (command

0x50). Most systems require the control afforded by Float By Denomination (0x44).

As with dispense commands, the response can potentially return a Command Unable To Be

Processed (0xF5) response with an error byte detailing the cause of the error. See details in

the payout section above.

Float, Minimum payout 0.10 EUR,

Float Value 15.00 EUR, Not Test

[3D][0A 00]

[DC 05 00 00][45 55 52][58]

OK [F0]

Minimum payout bytes specify there should be a way of paying this value at the

end of the operation, all notes below this value can be routed to the cashbox.

Poll [07]

Poll [07]

OK, Floating, 1 Currency,

Routed 9.75 EUR

[F0][D7][01][CF 03 00 00][45 55 52]

Poll [07]

OK, Floating, 1 Currency,

Routed 10.05 EUR

 [F0][D7][01][ED 03 00 00][45 55 52]

OK, Floating, 1 Currency,

Routed 2.50 EUR

 [F0][D7][01][FA 00 00 00][45 55 52]

Poll [07]

OK, Floated, 1 Currency,

Total Routed 10.05 EUR

 [F0][D8][01][ED 03 00 00][45 55 52]

It is recommended to use the Get Levels command to

update the new levels of notes in the host software.

The final byte specifies if this is a test float (0x19) or a real float (0x58).

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 60

FLOAT OPERATION – FLOAT BY DENOMINATION

Floating routes notes to the cashbox/stacker and at end of the operation the SMART

Payout should contain the number/value of notes specified. As with dispense, there are two

methods to float notes. This example details Float By Denomination (0x44) which enables

the host to determine how many of each denomination of notes will be left in the Payout

available for payout at the end of the operation. This is the recommended float operation

for most applications.

As with dispense commands, the response can potentially return a Command Unable To Be

Processed (0xF5) response with an error byte detailing the cause of the error. See details in

the payout section above.

OK [F0]

Float By Denomination, 7 Coins,

0 x 0.02 EUR, 0 x 0.05 EUR,

0 x 0.10 EUR, 0 x 0.20 EUR,

75 x 0.50 EUR, 100 x 1.00 EUR,

50 x 2.00 EUR, Not Test

[3D][07]

[00 00][02 00 00 00][45 55 52]

[00 00][05 00 00 00][45 55 52]

[00 00][0A 00 00 00][45 55 52]

[00 00][14 00 00 00][45 55 52]

[4B 00][32 00 00 00][45 55 52]

[64 00][64 00 00 00][45 55 52]

[32 00][C8 00 00 00][45 55 52]

 [58]

Minimum payout bytes specify there should be a way of paying this value at the

end of the operation, all notes below this value can be routed to the cashbox.

Poll [07]

Poll [07]

OK, Floating, 1 Currency,

Routed 29.85 EUR

[F0][D7][01][A9 0B 00 00][45 55 52]

Poll [07]

OK, Floating, 1 Currency,

Routed 37.22 EUR

 [F0][D7][01][8A 0E 00 00][45 55 52]

OK, Floating, 1 Currency,

Routed 16.57 EUR

 [F0][D7][01][79 60 00 00][45 55 52]

Poll [07]

OK, Floated, 1 Currency,

Total Routed 37.22 EUR

 [F0][D8][01][8A 0E 00 00][45 55 52]

It is recommended to use the Get Levels command to

update the new levels of notes in the host software.

The final byte specifies if this is a test float (0x19) or a real float (0x58).

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 61

NOTE TRANSPORT ERROR DURING DISPENSE

Poll [07]

OK [F0]

Persistent until validator is powered down and cause of jam is removed.

Payout, 10.00 EUR, Not Test

[33][E8 03 00 00][45 55 52][58]

OK [F0]

Poll [07]
OK, Dispensing, 1 Currency,

Dispensed 0.00 EUR, Disabled

[F0][DA][01][00 00 00 00][45 55 52][E8]

Poll [07]
OK, Error During Payout, 1 Currency,

Dispensed 0.00 EUR, Transport issue,

Jam Recovery

[F0]

[B1] [01] [00 00 00 00] [45 55 52] [01]

[B0]

Validator will continue to report dispensing while the Payout runs

a routine to try to move the note out of the Payout.

Poll [07]

OK, Jam Recovery

[F0] [B0]

Startup Sequence (including at least Sync, Key Exchange & Set Protocol Version)

Poll [07] OK, Device Reset,

Incomplete Payout, One Currency,

amount paid to this point 0.00,

Requested, 10.00, EUR, Disabled

[F0] [F1]

[DC] [01] [00 00 00 00]

[E8 03 00 00] [45 55 52] [E8]

Poll [07]
OK, Disabled [F0] [E8]

Jam Recovery will continue to be reported until the Jam is cleared by the unit, or the

unit is unable to clear the jam. If the unit is unable to clear the jam, the poll

response will change to Jammed.

Poll [07]
OK, Jammed, amount paid to this point

0.00, EUR, Disabled

[F0] [D5] [00 00 00 00] [45 55 52] [E8]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 62

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 63

REVERSE VALIDATION FAIL

Whilst moving notes out of the Payout storage (dispense, float or empty operations), the

SMART Payout will use a procedure called “reverse validation” to read the note as it is

moving down towards the cashbox to verify the value of the note that has retrieved from

storage. If for some reason the note value is not correct it will fail the reverse validation

check. In this case it will not be presented to the customer but instead stacked in the

cashbox.

In the example below the SMART Payout is meant to dispense a €10 note however a €20

note is retrieved instead. The current operation will be halted and the device becomes

disabled. The host can re-enable the device and re-try the payout if sufficient notes are left.

Poll [07]

OK [F0]

OK [F0]

Poll [07]

Poll [07]

Poll [07]

Poll [07]

Payout, 10.00 EUR, Not Test

[33][E8 03 00 00][45 55 52][58]

OK, Dispensing, 1 Currency,

Dispensed 0.00 EUR, Disabled

[F0][DA][01][00 00 00 00][45 55 52][E8]

OK, Error During Payout, 1 Currency,

Dispensed 0.00 EUR,

Reverse Validation Fail

[F0]

[B1] [01] [00 00 00 00] [45 55 52] [00]

[E8]

OK, Disabled [F0] [E8]

OK, Note transferred to stacker,

 1 Currency, 10.00 EUR (assumed),

Disabled

[F0][C9][01][E8 03 00 00][45 55 52][E8]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 64

POWER REMOVED DURING PAYOUT

If the power is removed from the SMART Payout while it is dispensing the flow of events will

depend on when the power is removed.

Here the flow is shown if the power is removed before the note is fully inside the NV200

and is still partly in the Payout.

Payout, 10.00 EUR, Not Test

[33][E8 03 00 00][45 55 52][58]

OK [F0]

Poll [07]
OK, Dispensing, 1 Currency,

Dispensed 0.00 EUR, Disabled

[F0][DA][01][00 00 00 00][45 55 52][E8]

OK [F0]

Poll [07]

Power is removed as the note is between the diverter and NV200.

Sync [11]

Sync [11]

Sync [11]

OK [F0]

Run startup routine (key exchange, set protocol level, setup request etc.)

Poll [07]
OK, Slave Reset,

Incomplete Payout, 1 Currency,

Dispensed 0.00 EUR,

Requested Payout 10.00 EUR, Disabled

[F0][F1]

[DC][01][00 00 00 00]

[E8 03 00 00][45 55 52][E8]

Poll [07]
OK,

Note Cleared To Cashbox At Startup,

10.00 EUR, Disabled

[F0][F1]

[CA][E8 03 00 00][45 55 52][E8]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 65

If the power is removed once the note is inside the NV200, but not yet reverse validated

and being returned to the customer; the flow will be as follows.

Payout, 10.00 EUR, Not Test

[33][E8 03 00 00][45 55 52][58]

OK [F0]

Poll [07]
OK, Dispensing, 1 Currency,

Dispensed 0.00 EUR, Disabled

[F0][DA][01][00 00 00 00][45 55 52][E8]

OK [F0]

Poll [07]

Power is removed as the note is fully inside the NV200.

Sync [11]

Sync [11]

Sync [11]

OK [F0]

Run startup routine (key exchange, set protocol level, setup request etc.)

Poll [07]
OK, Slave Reset,

Incomplete Payout, 1 Currency,

Dispensed 0.00 EUR,

Requested Payout 10.00 EUR, Disabled

[F0][F1]

[DC][01][00 00 00 00]

[E8 03 00 00][45 55 52][E8]

Poll [07]
OK, Note Cleared To Cashbox At Reset,

Channel 0 (unknown), Disabled

[F0] [E2][00] [E8]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 66

If the power is removed once the note is inside the NV200, validated and in the process of

being returned to the customer; the flow will be as follows.

Payout, 10.00 EUR, Not Test

[33][E8 03 00 00][45 55 52][58]

OK [F0]

Poll [07]
OK, Dispensing, 1 Currency,

Dispensed 0.00 EUR, Disabled

[F0][DA][01][00 00 00 00][45 55 52][E8]

OK [F0]

Poll [07]

Power is removed as the note is fully inside the NV200.

Sync [11]

Sync [11]

Sync [11]

OK [F0]

Run startup routine (key exchange, set protocol level, setup request etc.)

Poll [07]
OK, Slave Reset,

Incomplete Payout, 1 Currency,

Dispensed 10.00 EUR,

Requested Payout 10.00 EUR, Disabled

[F0][F1]

[DC][01][E8 03 00 00]

[E8 03 00 00][45 55 52][E8]

Poll [07]
OK, Disabled [F0][E8]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 67

EMPTY PAYOUT – EMPTY

There are two options when emptying a SMART Payout, the first option is the Empty (0x3F)

command. This does not keep track of the notes as they are moved to the cashbox/stacker.

An OK (0xF0) response to the empty or SMART Empty commands indicates the empty

operation was accepted and will begin. The following error codes could also be returned.

 0xF5 (command cannot be processed) is returned, an error code will follow. See

the relevant command in section 9.3 for more details on these codes.

o No additional byte - No Payout connected

o 0x03 - Payout Busy

 If the command was sent unencrypted then Parameter Out Of Range (0xF4) will be

returned.

OK [F0]

 Poll [07]

OK, Emptied, Disabled [F0][C3][E8]

Poll [07]

Empty [3F]

OK, Emptying, Disabled [F0][C2][E8]

OK [F0]

Poll [07]

Poll [07]

OK, Note Transferred To Stacker

20.00 EUR, Emptying, Disabled

[F0][C9]

[D0 07 00 00][45 55 52][C2][E8]

Poll [07]

OK, Emptying [F0][C2]

Poll [07]

OK, Emptying, Disabled [F0][C2][E8]

Poll [07]

OK, Note Transferred To Stacker

10.00 EUR, Emptying, Disabled

[F0][C9]

[E8 03 00 00][45 55 52][C2][E8]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 68

EMPTY PAYOUT – SMART EMPTY

If the host requires a summary of the notes that were moved to the cashbox during the

empty operation then the SMART Empty command (0x52) can be used. During this

procedure, all notes in the Recycler storage are moved to the cashbox/stacker. At the end

of the procedure the Get Cashbox Operation Data command (0x53) will report a summary

of the notes moved to the cashbox.

Error conditions are detailed above.

OK [F0]

Poll [07]

OK, SMART Emptied, 1 currency,

Total Routed 10.00 EUR, Disabled

 [F0][B4][01][FF 09 00 00][45 55 52][E8]

Poll [07]

SMART Empty [52]

OK, SMART Emptying,

1 currency, Routed 0.00 EUR, Disabled

 [F0][B3][01][00 00 00 00][45 55 52][E8]

The Get Cashbox Operation Data (command 0x53) can now be sent to

determine which coins were deposited into the cashbox during the operation.

Poll [07]

OK, SMART Emptying,

1 currency, Routed 10.00 EUR, Disabled

[F0][B3][01][E8 03 00 00][45 55 52][E8]

OK, 7 Denominations,

0 x 5.00 EUR, 1 x 10.00 EUR,

0 x 20.00 EUR, 0 x 50.00 EUR,

0 x 100.00 EUR, 0 x 200.00 EUR,

0 x 500.00 EUR,

0 x unrecognised notes, Disabled

[F0][07]

[03 00][F4 01 00 00][45 55 52]

[02 00][E8 03 00 00][45 55 52]

[05 00][D0 07 00 00][45 55 52]

[00 00][88 13 00 00][45 55 52]

[00 00][10 27 00 00][45 55 52]

[00 00][20 4E 00 00][45 55 52]

[00 00][50 C3 00 00][45 55 52]

[00 00 00 00][E8]

Get Cashbox Operation Data [53]

Poll [07]

OK, Note To Cashbox 10.00 EUR,

SMART Emptying, 1 currency,

Routed 10.00 EUR, Disabled

[F0][C9][E8 03 00 00][45 55 52]

[B3][01][DF 06 00 00][45 55 52][E8]

Note: Get Cashbox Operation Data can be set on completion of any

Float, Dispense or SMART Empty operations.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 69

Sync to establish

presence of device

Negotiate encryption

Set Routing

Poll

Handle poll response

Enable Device

Set Protocol Version

Setup Request

Dispense/Float Amount/

Empty

Set Coin Mech Inhibits

Get All Levels

NOTE

It may be beneficial to send a poll command immediately

before the Enable command in order to process any events

which may be left in the poll queue. It is possible that the host

may not want to Enable the device based on what it receives in

this Poll response.

8.6 SMART HOPPER

OVERVIEW OF OPERATION

This flow outlines the blocks that make up the fundamental operation of a SMART Hopper.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 70

SETUP REQUEST

Host Protocol Version [06] [08]

OK [F0]

Parse setup request

03 = Unit Type (SMART Hopper)

30 36 31 34 = Firmware (6.14)

45 55 52 = Country Code (EUR)

07 = Protocol Version (7)

07 = Number of channels (7)

02 00 00 00 = Value of Ch1 (0.02)

05 00 00 00 = Value of Ch2 (0.05)

0A 00 00 00 = Value of Ch3 (0.10)14 00

00 00 = Value of Ch4 (0.20)

32 00 00 00 = Value of Ch5 (0.50)

64 00 00 00 = Value of Ch6 (1.00)

C8 00 00 00 = Value of Ch7 (2.00)

45 55 52 (repeated x 4) = Currency Code

for each channel (EUR)

Setup Request [05]
OK, Setup Data [F0]

[F0] [03 30 36 31 34

45 55 52 07 07

02 00 05 00 0A 00

14 00 32 00 64 00

C8 00

45 55 52 45 55 52 45 55 52

45 55 52 45 55 52 45 55 52

45 55 52]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 71

SETTING COIN MECHANISM INHIBITS

By default, at startup, all coins available to the coin mechanism that are supported by the

SMART Hopper dataset are enabled and the Master Inhibit is disabled so coins will be

accepted.

To disable all coins, enable the global coin mechanism inhibit (command 0x49). To disable

specific coins, use specific coin inhibits (command 0x40).

Individual coins can be inhibited using Set Coin Mech Inhibits command. The byte following

the command should be 0 to disable the coin so none are accepted, 1 will enable the coin.

If OK (0xF0) is returned, the command was successful and the inhibits will be set. If no coin

mechanism is detected Wrong Number of Parameters (0xF3) will be returned.

Alternatively all coins can be inhibited using Set Coin Mech Global Inhibit command. The

byte following the command should be 0 to disable the mechanism so no coins are

accepted, 1 will enable the mechanism.

If no coin mechanism is detected Wrong Number of Parameters (0xF3) will be returned.

OK [F0]

Set Coin Mech Inhibit,

Enable Coin, 0.20 EUR

[40][01][14 00 00 00][45 55 52]

OK [F0]

Set Coin Mech Global Inhibit,

Enable Acceptance

[49][01]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 72

ROUTING COINS

Routing changes the path for the coins as they are read. The available routes are:

 Recycle into the Hopper storage and use for pay-outs.

 Send to the cashbox to remove from Hopper storage.

 OK (0xF0) indicates setting the route was successful.

 Parameter Out Of Range (0xF4) is reported if the command is sent unencrypted.

 Command Cannot be Processed is reported if there was a problem processing the

command.

Set Routing, Recycle, 0.50 EUR

[3B][00][32 00 00 00][45 55 52]

OK [F0]

Routing codes:

0x00 – recycle & use for payout

0x01 – cashbox

Set Routing, To cashbox, 0.05 EUR

[3B][01][05 00 00 00][45 55 52]

OK [F0]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 73

ENABLE HOPPER

Enables the SMART Hopper.

Enable will always respond ok, use Poll command (0x07) to check the SMART Hopper has

enabled. The Disabled event is reported for one Poll response after the Enable command is

received. This is so that the host is informed the device has been disabled.

The SMART Hopper will not enable if it is currently reporting Fraud Attempt Seen (0xD5).

Enable [0A]

OK [F0]

Poll [07]

OK, Disabled [F0] [E8]

Poll [07]

OK, Disabled [F0] [E8]

Poll [07]

OK [F0]

Poll [07]

OK, Fraud Attempt, 1 Currency,

Dispensed to this point 5.50 EUR,

Disabled

[F0][E6][01]

[26 02 00 00][45 55 52][E8]

Poll [07]

Enable [07]

OK, Dispensing, 1 Currency, 5.50 EUR

[F0][DA][01][26 02 00 00][45 55 52]

OK, Disabled [F0][E8]

OK [F0]

Poll [07]

OK, Disabled [F0][E8]

Poll [07]

OK, Disabled [F0][E8]

Poll [07]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 74

GET COIN AMOUNT

There are 2 commands available to obtain the levels of the coins stored inside the SMART

Hopper.

Each denomination can individually be queried using Get Coin Amount command (0x35). To

get levels for all coins stored this needs to be sent as many time as there are denomination

in the dataset (as detailed in Setup Request).

The levels of all the coins in the dataset can be retrieved using the Get All Levels command

(0x22). This command returns the levels of all denominations in the dataset programmed

in the SMART Hopper, along with the value and currency of the denomination.

This is typically more efficient than sending individual level requests.

For both of the level commands detailed above, if the payout unable to process the

command, Command Cannot Be Processed (0xF5) will be returned.

OK, 30 coins

[F0] [1E 00]

Get Coin Amount, 0.50 EUR

[35][32 00 00 00][45 55 52]

OK, 520 coins

[F0] [08 02]

Get Coin Amount, 1.00

[35][64 00 00 00][45 55 52]

OK, 7 Denominations

0 x 0.02 EUR,

0 x 0.05 EUR,

0 x 0.10 EUR,

0 x 0.20 EUR,

30 x 0.50 EUR,

520 x 1.00 EUR,

00 x 2.00 EUR

[F0] [07]

[00 00][02 00 00 00][45 55 52]

[00 00][05 00 00 00][45 55 52]

[00 00][0A 00 00 00][45 55 52]

[00 00][14 00 00 00][45 55 52]

[1E 00][32 00 00 00][45 55 52]

[08 02][64 00 00 00][45 55 52]

[00 00][C8 00 00 00][45 55 52]

Get All Levels [22]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 75

DISPENSING COINS - PAYOUT

There are two methods to dispense coins. This example details Payout (command 0x33)

which allows the Hopper to decide which coins to payout based on options set within the

device (command 0x50).

Payout, 4.75 EUR, Not Test

[33][DB 01 00 00][45 55 52][58]

OK [F0]

The final byte specifies if this is a test payout (0x19) or a real payout (0x58).

Poll [07]
OK, Dispensing, 1 Currency,

Dispensed 0.00 EUR

 [F0][DA][01][00 00 00 00][45 55 52]

Poll [07]
OK, Dispensing, 1 Currency,

Dispensed 1.50 EUR

 [F0][DA][01][96 00 00 00][45 55 52]

Poll [07]
OK, Dispensing, 1 Currency,

Dispensed, 3.55 EUR

 [F0][DA][01][63 01 00 00][45 55 52]

Poll [07]
OK, Dispensing, 1 Currency,

Dispensed, 4.75 EUR

 [F0][DA][01][DB 01 00 00][45 55 52]

Poll [07]

OK,

Cashbox Paid, 1 Currency,

Cashbox Paid value 0.00 EUR,

Dispensed, 1 Currency,

Dispensed value 4.75 EUR

 [F0]

[DE][01][00 00 00 00][45 55 52]

[D2][01][DB 01 00 00][45 55 52]

When the dispensing is complete, the Hopper will report the value of coins

deposited in the cashbox and the value dispensed from the payout chute.

It is recommended to use the Get Levels command to

update the new levels of coins in the host software.

OK [F0]

Poll [07]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 76

DISPENSING COINS - PAYOUT BY DENOMINATION

There are two methods to dispense coins. This example details Payout by Denomination

(command 0x46) which allows the user to specify exactly which coins are paid out. This

example pays 4 x €1.00, 1 x €0.50, 1 x €0.20 and 1 x €0.05 coins.

Payout by denomination,

4 denominations

1 x 0.05 EUR, 1 x 0.20 EUR

1 x 0.50 EUR, 4 x 1.00 EUR, Not Test

[46] [04]

[01 00][05 00 00 00][45 55 52]

[01 00][14 00 00 00][45 55 52]

[01 00][32 00 00 00][45 55 52]

[04 00][64 00 00 00][45 55 52] [58]

OK [F0]

Poll [07]

OK, Dispensing, 1 Currency,

Dispensed 0.00 EUR

 [F0][DA][01][00 00 00 00][45 55 52]

Poll [07]

OK, Dispensing, 1 Currency,

Dispensed 1.05 EUR

 [F0][DA][01][69 00 00 00][45 55 52]

Poll [07]

OK, Dispensing, 1 Currency,

Dispensed 3.75 EUR

 [F0][DA][01][77 01 00 00][45 55 52]

Poll [07]

OK, Dispensing, 1 Currency,

Dispensed 4.75 EUR

 [F0][DA][01][DB 01 00 00][45 55 52]

Poll [07]
OK,

Cashbox Paid, 1 Currency,

Cashbox Paid value 0.00 EUR,

Dispensed, 1 Currency,

Dispensed value 4.75 EUR

 [F0]

[DE][01][00 00 00 00][45 55 52]

[D2][01][DB 01 00 00][45 55 52]

When the dispensing is complete, the Hopper will report the value of coins

deposited in the cashbox and the value dispensed from the payout chute.

It is recommended to use the Get Levels command to

update the new levels of coins in the host software.

The final byte specifies if this is a test payout (0x19) or a real payout (0x58).

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 77

PAYOUT – ERROR CONDITIONS

The device will respond to Payout command (0x33) and Payout By Denomination

command (0x46) with OK (0xF0) if there are no problems. Alternatively the following

responses could be received:

 0xF5 (command cannot be processed) is returned, an error code will follow. See

the relevant command in section 9.3 for more details on these codes.

o 0x01 Not enough value in the SMART Hopper to complete the payout.

o 0x02 Can’t pay exact value requested (request is higher than stored value

or the value cannot be broken down with the coins available e.g. asking for

€0.15 when no €0.05, €0.02, or €0.01 coins are stored).

o 0x03 SMART Hopper Busy

o 0x04 SMART Hopper Disabled

 If the command was sent unencrypted then Parameter Out Of Range (0xF4) will be

returned.

The test byte at the end of the payout command can be used in advance of actually issuing

the payout command to check if the payout will be able to succeed.

Payout, 18.75 EUR, Test

[33][53 07 00 00][45 55 52][19] Command Cannot Be Processed,

Disabled

 [F0] [04]

OK, Disabled [F0] [F8]

Poll [07]

OK, Disabled [F0] [F8]

Poll [07]

OK, Disabled [F0] [F8]

Enable [0A]

OK, [F0]

Poll [07]

Payout, 18.75 EUR, Not Test

[33][53 07 00 00][45 55 52][58]

OK [F0]

OK [F0]

Poll [07]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 78

FLOAT OPERATION - FLOAT

Floating routes coins to the cashbox below and at end of the operation the SMART Hopper

should contain the number/value of coins specified. As with dispense, there are two

methods to float coins. This example details Float (command 0x3D) which allows the

Hopper to decide which coins to float based on options set within the device (command

0x50). Most systems require the control afforded by Float By Denomination (0x44).

As with dispense commands, the response can potentially return a Command Unable To Be

Processed (0xF5) response with an error byte detailing the cause of the error. See details in

the payout section above.

Float, Minimum payout 0.10 EUR,

Float Value 15.00 EUR, Not Test

[3D][0A 00]

[DC 05 00 00][45 55 52][58]

OK [F0]

Minimum payout bytes specify there should be a way of paying this value at the

end of the operation, all coins below this value can be routed to the cashbox.

Poll [07]

Poll [07]

OK, Floating, 1 Currency,

Routed 9.75 EUR

[F0][D7][01][CF 03 00 00][45 55 52]

Poll [07]

OK, Floating, 1 Currency,

Routed 10.05 EUR

 [F0][D7][01][ED 03 00 00][45 55 52]

OK, Floating, 1 Currency,

Routed 2.50 EUR

 [F0][D7][01][FA 00 00 00][45 55 52]

Poll [07]

OK, Floated, 1 Currency,

Total Routed 10.05 EUR

 [F0][D8][01][ED 03 00 00][45 55 52]

It is recommended to use the Get Levels command to

update the new levels of coins in the host software.

The final byte specifies if this is a test float (0x19) or a real float (0x58).

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 79

FLOAT OPERATION – FLOAT BY DENOMINATION

Floating routes coins to the cashbox below and at end of the operation the SMART Hopper

should contain the number/value of coins specified. As with dispense, there are two

methods to float coins. This example details Float By Denomination (0x44) which enables

the host to determine how many of each denomination of coin will be left in the Hopper

available for payout at the end of the operation. This is the recommended float operation

for most applications.

As with dispense commands, the response can potentially return a Command Unable To Be

Processed (0xF5) response with an error byte detailing the cause of the error. See details in

the payout section above.

OK [F0]

Float By Denomination, 7 Coins,

0 x 0.02 EUR, 0 x 0.05 EUR,

0 x 0.10 EUR, 0 x 0.20 EUR,

75 x 0.50 EUR, 100 x 1.00 EUR,

50 x 2.00 EUR, Not Test

[3D][07]

[00 00][02 00 00 00][45 55 52]

[00 00][05 00 00 00][45 55 52]

[00 00][0A 00 00 00][45 55 52]

[00 00][14 00 00 00][45 55 52]

[4B 00][32 00 00 00][45 55 52]

[64 00][64 00 00 00][45 55 52]

[32 00][C8 00 00 00][45 55 52]

 [58]

Minimum payout bytes specify there should be a way of paying this value at the

end of the operation, all coins below this value can be routed to the cashbox.

Poll [07]

Poll [07]

OK, Floating, 1 Currency,

Routed 29.85 EUR

[F0][D7][01][A9 0B 00 00][45 55 52]

Poll [07]

OK, Floating, 1 Currency,

Routed 37.22 EUR

 [F0][D7][01][8A 0E 00 00][45 55 52]

OK, Floating, 1 Currency,

Routed 16.57 EUR

 [F0][D7][01][79 60 00 00][45 55 52]

Poll [07]

OK, Floated, 1 Currency,

Total Routed 37.22 EUR

 [F0][D8][01][8A 0E 00 00][45 55 52]

It is recommended to use the Get Levels command to

update the new levels of coins in the host software.

The final byte specifies if this is a test float (0x19) or a real float (0x58).

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 80

COIN JAM

In the event that a coin is in the position that it blocks the normal movement of the motors,

the SMART Hopper will start a routine that will attempt to recover normal movement.

During this time, Dispensing (0xDA), Floating (0xD7) or Empting (0xC2) will continue to be

returned as a poll response. In the rare event that this routine cannot move the coin that is

blocking the movement the jammed (0xD5) poll response will be reported with the amount

that was dispensed at the point the jam occurred.

Jams can be recovered by removing power, manually tipping all coins out of the SMART

Hopper and clearing the jam. When the power is re-applied the SMART Hopper will initialise

and, if the jam is clear return to normal operation. Once keys are negotiated and the

SMART Hopper is enabled the host can send a command to resume the operation.

OK, Dispensing, 1 Currency, 0.00 EUR

 [F0][DA][01][00 00 00 00][45 55 52]

Poll [07]

OK, Jammed, 1 Currency,

Dispensed to this point 5.50 EUR,

Disabled

[F0][D5][01]

[26 02 00 00][45 55 52][E8]

This final poll response will persist until action is taken by the user.

Poll [07]

Poll [07]

Poll [07]

OK, Dispensing, 1 Currency, 5.50 EUR

[F0][DA][01][26 02 00 00][45 55 52]

OK, Disabled, Jammed, 1 Currency,

Dispensed to this point 5.50 EUR

[F0][E8][D5][01]

[26 02 00 00][45 55 52]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 81

FRAUD ATTEMPT

If a sensor is triggered out of order it could be an indication that a manipulation is being

performed to the Hopper. In this case a Fraud Attempt poll event is reported and, if in

progress, payout/float/empty routine is halted.

The Fraud Event response is persistent and can only be cleared by resetting the device. At

this time the routine can be continued.

If multiple fraud attempts are reported in a short time it is advised that the host disables

payout for security reasons until the cause can be investigated.

OK, Dispensing, 1 Currency, 0.00 EUR

 [F0][DA][01][00 00 00 00][45 55 52]

Poll [07]

OK, Fraud Attempt, 1 Currency,

Dispensed to this point 5.50 EUR,

Disabled

[F0][E6][01]

[26 02 00 00][45 55 52][E8]

Poll [07]

Poll [07]

Poll [07]

OK, Dispensing, 1 Currency, 5.50 EUR

[F0][DA][01][26 02 00 00][45 55 52]

OK, Disabled, Fraud Attempt, 1 Currency,

Dispensed to this point 5.50 EUR

[F0][E8][D5][01]

[26 02 00 00][45 55 52]

OK [F0]

Reset [01]

Close port, wait until the Hopper has had a chance to reset and open port.

OK [F0]

Sync [11]

OK, Slave Reset, Disabled, Incomplete

Payout, 1 Currency, Dispensed 5.50 EUR,

1 Currency Requested 6.00 EUR

[F0][F1][F8]

[DC][01][26 02 00 00][45 55 52]

[01][58 02 00 00][45 55 52]

Poll [07]

Exchange keys, set protocol level, setup request, get levels and enable.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 82

EMPTY HOPPER - EMPTY

There are two options when emptying a SMART Hopper, the first option is the Empty (0x3F)

command. This does not keep track of the coins as they are moved to the cashbox.

The device will respond to Empty command (0x3F) and SMART Empty command (0x52)

with OK (0xF0) if there are no problems. Alternatively if the command was sent

unencrypted then Parameter Out Of Range (0xF4) will be returned.

OK [F0]

 Poll [07]

OK, Emptied [F0][C3]

This last poll response will now repeat until the empty process is complete.

Once it has finished, the following response will be reported.

Poll [07]

Empty [3F]

OK, Emptying [F0][C2]

OK [F0]

Poll [07]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 83

EMPTY HOPPER – SMART EMPTY

If the host requires a summary of the coins that were moved to the cashbox during the

empty operation then the SMART Empty command (0x52) can be used. During this

procedure, all coins in the Hopper storage are moved to the cashbox, as with the empty

routine however they are counted out. At the end of the procedure the Get Cashbox

Operation Data command (0x53) will report a summary of the coins moved to the cashbox.

OK [F0]

Poll [07]

OK, SMART Emptied, 1 currency,

Total Routed 25.59 EUR

 [F0][B4][01][FF 09 00 00][45 55 52]

Poll [07]

SMART Empty [52]

OK, SMART Emptying,

1 currency, Routed 0.00 EUR

 [F0][B3][01][00 00 00 00][45 55 52]

The Get Cashbox Operation Data (command 0x53) can now be sent to

determine which coins were deposited into the cashbox during the operation.

Poll [07]

OK, SMART Emptying,

1 currency, Routed 25.59 EUR

 [F0][B3][01][FF 09 00 00][45 55 52]

Poll [07]

OK, SMART Emptying,

1 currency, Routed 17.59 EUR

[F0][B3][01][DF 06 00 00][45 55 52]

OK, 7 Denominations,

2 x 0.02 EUR, 1 x 0.05 EUR,

0 x 0.10 EUR, 0 x 0.20 EUR,

5 x 0.50 EUR, 3 x 1.00 EUR,

10 x 2.00 EUR,

1 x unrecognised coins

[F0][07]

[02 00][02 00 00 00][45 55 52]

[01 00][05 00 00 00][45 55 52]

[00 00][0A 00 00 00][45 55 52]

[00 00][14 00 00 00][45 55 52]

[05 00][32 00 00 00][45 55 52]

[03 00][64 00 00 00][45 55 52]

[0A 00]C8 00 00 00][45 55 52]

[01 00 00 00]

Get Cashbox Operation Data [53]

Note: Get Cashbox Operation Data can be set on completion of any Float,

Dispense or SMART Empty operations.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 84

TIMOUT DURING PAYOUT

If the SMART Hopper is searching for a specific coin as part of a payout or float operation it

has a timeout set. Once this timeout is reached and the coin has not been found the

Hopper will return the poll response Timeout (0xD9).

The operation can be retried with a different selection of coins or handled in another way,

specific to the host device/application.

OK, 1 Currency,

Dispensing, 4.70 EUR

 [F0][DA][01][D6 01 00 00][45 55 52]

 Poll [07]

Poll [07]

OK, Timeout,

1 Currency, Dispensed 4.70 EUR,

Cashbox Paid, 1 currency, 0.00 EUR

 [F0]

[D9][01][D6 01 00 00][45 55 52]

[DE][01][00 00 00 00][45 55 52]

Poll [07]

OK, 1 Currency,

Dispensing, 4.70 EUR

 [F0][DA][01][D6 01 00 00][45 55 52]

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 85

COINS INSERTED TO COIN MECHANISM

OK [F0]

Poll [07]

Poll [07]

OK, Coin Credit, 2.00 EUR

 [F0][DF][C8 00 00 00][45 55 52]

It is recommended to update the new levels of coins in the host software.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 86

9 COMMANDS FOR ITL DEVICES

9.1 BANK NOTE VALIDATOR (NV9USB, NV10USB, BV20, BV50, BV100, NV200)

RESET (0X01)

Single byte command causes the unit to reset.

HOST PROTOCOL VERSION (0X06)

Two byte command sets the unit to report events up to and including those found in the

specified protocol version. Please note that the highest protocol version that a unit will

support is determined by its firmware. Please see the appendix for more information.

POLL (0X07)

Single byte command instructs the unit to report all the events that have occurred since the

last time a poll was sent to the unit. For a more detailed explanation of the poll command

and polling the unit, please see section 7 - Polling Devices.

GET SERIAL NUMBER (0X0C)

Single byte command causes the unit to report its unique serial number.

Return Data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Serial number. 4 bytes. Big

endian.

0x00 This serial number as a 32

bit integer is 2746699. 2 0x29

3 0xE9

4 0x4B

SYNCHRONISATION COMMAND (0X11)

This single byte command tells the unit that the next sequence ID will be 1. This is always

the first command sent to a unit, to prepare it to receive any further commands.

DISABLE (0X09)

This single byte command disables the unit. This means the unit will enter its disabled state

and not execute any further commands or perform any other actions. A poll to the unit

while in this state will report disabled (0xE8).

ENABLE (0X0A)

Single byte command enables the unit. It will now respond to and execute commands.

DISPLAY ON (0X03)

Single byte command turns on the bezel light when the unit is enabled.

DISPLAY OFF (0X04)

Single byte command turns off the bezel light when the unit is enabled.

REJECT (0X08)

Single byte command causes the validator to reject the current note.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 87

SETUP REQUEST (0X05)

For general information about the setup request see section 6.3.2. Single byte command.

The below table displays the response data of the setup request and provides an example

of a real response from a unit with a Euro note dataset.

Return Data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Unit type. Single byte. 0x00 Note validator type.

2 Firmware version. 4 bytes.

Each byte represents an

ASCII character.

0x00 This gives 0333 when

converted to ASCII

characters. Formatted it

would read 3.33.

3 0x33

4 0x33

5 0x33

6 Country code of validator. 3

bytes. Each byte represents

an ASCII character.

0x45 When converted to ASCII

characters it reads EUR. 7 0x55

8 0x52

9 Value multiplier. 3 bytes.

Big endian.

0x00 When converted into a 24

bit integer it will have the

value 1.
10 0x00

11 0x01

12 Number of channels. 0x04 Four channels.

13* Channel values. Single byte

per channel.

0x05 Five.

14 0x0A Ten.

15 0x14 Twenty.

16 0x32 Fifty.

17* Channel security level.

Single byte per channel.

(Legacy code, now

deprecated).

0x02 Level 2.

18 0x02 Level 2.

19 0x02 Level 2.

20 0x02 Level 2.

21* Real value multiplier. 3

bytes. Big endian.

0x00 When converted into a 24

bit integer it will have the

value 100.
22 0x00

23 0x64

24* Protocol version. 0x07 Protocol version 7.

25* Country codes for each

channel. 3 bytes per

channel.

0x45 Each channel has the

country code EUR when

converted to an ASCII

character.

26 0x55

27 0x52

28 0x45

29 0x55

30 0x52

31 0x45

32 0x55

33 0x52

34 0x45

35 0x55

36 0x52

37* Channel values for each

channel. 4 bytes per

channel. Little endian.

0x05 When converted to a 32

bit integer, these values

come out at 5, 10, 20, 50.
38 0x00

39 0x00

40 0x00

41 0x0A

42 0x00

43 0x00

44 0x00

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 88

45 0x14

46 0x00

47 0x00

48 0x00

49 0x32

50 0x00

51 0x00

52 0x00

* - These sections’ start position and length in the array will vary depending on the number

of channels.

UNIT DATA (0X0D)

Single byte command causes the validator to return information about itself. It is similar to

the Setup Request command but a more concise version. It is intended for host machines

with limited resources. The below table displays the response data of the unit data request

and provides an example of a real response from a unit with a Euro note dataset.

Return Data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Unit type. Single byte. 0x00 Note validator type.

2 Firmware version. 4 bytes.

Each byte represents an

ASCII character.

0x00 This gives 0333 when

converted to ASCII

characters. Formatted it

would read 3.33.

3 0x33

4 0x33

5 0x33

6 Country code of validator. 3

bytes. Each byte represents

an ASCII character.

0x45 When converted to ASCII

characters it reads EUR. 7 0x55

8 0x52

9 Value multiplier. 3 bytes.

Big endian.

0x00 When converted into a 24

bit integer it will have the

value 1.
10 0x00

11 0x01

12 Protocol version. 0x07 Protocol version 7.

CHANNEL VALUE DATA (0X0E)

Single byte command causes the validator to return the number of channels it is using

followed by the value of each channel. The below table displays the response data of the

channel value data request and provides an example of a real response from a unit with a

Euro note dataset.

Return data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Number of channels. Single

byte.

0x04 Four channels.

2* Channel values. Single byte

per channel.

0x05 Five.

3 0x0A Ten.

4 0x14 Twenty.

5 0x32 Fifty.

* - This section’s length in the array will vary depending on the number of channels.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 89

LAST REJECT CODE (0X17)

Single byte command causes the validator to report the reason for the last note being

rejected.

Return data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Reject code. Single byte. 0x01 Note length incorrect. For

a full list of reject codes

see Appendix

HOLD (0X18)

Single byte command causes the validator to hold the current accepted note if the

developer does not wish to accept or reject the note with the next command. This also

resets the 5 second escrow timer. (Normally after 5 seconds a note is automatically

rejected).

GET BAR CODE READER CONFIGURATION (0X24)

Single byte command causes the validator to return the configuration data for attached bar

code readers if there is one present.

Return data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Bar code hardware status.

0x00 = None.

Ox01 = Top reader.

0x02 = Bottom reader.

0x03 = Both.

0x03 Both top and bottom

barcode readers detected.

2 Enabled status.

0x00 = None.

0x01 = Top.

0x02 = Bottom.

0x03 = Both.

0x03 Both top and bottom

barcode readers are

enabled.

3 Bar code format.

 (0x01 = interleaved 2 of 5)

0x00 Not interleaved 2 of 5.

4 Number of characters.

Min = 6. Max = 24.

0x0A 10 characters.

SET BAR CODE READER CONFIGURATION (0X23)

Four byte command sets up the validator’s bar code reader configuration.

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x23 The set bar code reader

configuration command.

1 Enabled status.

0x00 = None.

0x01 = Top.

0x02 = Bottom.

0x03 = Both.

0x03 Enabling both top and

bottom barcode readers.

2 Bar code format.

 (0x01 = interleaved 2 of 5)

0x00 Not interleaved 2 of 5.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 90

3 Number of characters.

Min = 6. Max = 24.

0x0A 10 characters.

GET BAR CODE INHIBIT (0X25)

Single byte command causes validator to return the current bar code/currency inhibit

status. This indicates whether the validator can accept only currency, only barcodes, both or

neither.

Return Data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 A bit register where bit 0

(lsb) indicates whether

currency is enabled. 0 =

Enabled. 1 = Disabled.

Bit 1 indicates whether the

bar code ticket is enabled.

0 = Enabled. 1 = Disabled.

0xFE

(11111110 in binary).

Currency is accepted,

barcodes are rejected.

SET BAR CODE INHIBIT (0X26)

Two byte command sets bar code/currency inhibits. When the unit is started up or reset,

the default is currency enabled, bar code disabled (0xFE).

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x26 The set bar code inhibit

command.

1 A bit register where bit 0

(lsb) indicates whether

currency is enabled. 0 =

Enabled. 1 = Disabled.

Bit 1 indicates whether the

bar code ticket is enabled.

0 = Enabled. 1 = Disabled.

0xFE

(11111110 in binary).

Setting currency to be

accepted, barcodes to be

rejected.

GET BAR CODE DATA (0X27)

Single byte command causes validator to return the last valid barcode ticket data.

Return data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Status of the ticket. Single

byte.

0x00 = No valid data.

0x01 = Ticket in escrow.

0x02 = Ticket stacked.

0x03 = Ticket rejected.

0x00 No valid data.

2 Length of barcode data.

Single byte.

0x02 2 bytes of data follow this

length byte.

3* Barcode data. 0xB5 Example data.

4 0xB6 Example data.

* - The length of this section will vary based on the length of the barcode data.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 91

CONFIGURE BEZEL (0X54)

Four byte command that sets the colour of the bezel to a specified RGB colour. If the

validator does not have a bezel that can be modified in this way, 0xF2 (Unknown

command) will be returned.

Send Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x54 The configure bezel

command.

1 Red byte. 0xFF Set the red intensity of the

bezel.

2 Green byte. 0x00 Set the green intensity of

the bezel.

3 Blue byte. 0x00 Set the blue intensity of

the bezel.

4 Storage mode. Single byte.

0 = Ram (will return to

original on reset).

1 = EEPROM (will persist

after reset).

0x00 Stored in Ram. Will return

to original when reset.

POLL WITH ACK (0X56)

Single byte command causes the validator to respond to a poll in the same way as normal

but specified events will need to be acknowledged by the host using the EVENT ACK before

the validator will allow any further note action. If this command is not supported, 0xF2

(Unknown command) will be returned. See appendix for further details about this

command.

EVENT ACK (0X57)

Single byte command causes validator to continue with operations after it has been

sending a repeating Poll ACK response. See appendix for further details about this

command.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 92

9.2 NV11

RESET (0X01)

Single byte command causes the unit to reset.

HOST PROTOCOL VERSION (0X06)

Two byte command sets the unit to report events up to and including those found in the

specified protocol version. Please note that the highest protocol version that a unit will

support is determined by its firmware. Please see the appendix for more information.

POLL (0X07)

Single byte command instructs the unit to report all the events that have occurred since the

last time a poll was sent to the unit. For a more detailed explanation of the poll command

and polling the unit, please see section 7 - Polling Devices.

GET SERIAL NUMBER (0X0C)

Single byte command causes the unit to report its unique serial number.

Return Data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Serial number. 4 bytes. Big

endian.

0x00 This serial number as a 32

bit integer is 2746699. 2 0x29

3 0xE9

4 0x4B

SYNCHRONISATION COMMAND (0X11)

This single byte command tells the unit that the next sequence ID will be 1. This is always

the first command sent to a unit, to prepare it to receive any further commands.

DISABLE (0X09)

This single byte command disables the unit. This means the unit will enter its disabled state

and not execute any further commands or perform any other actions. A poll to the unit

while in this state will report disabled (0xE8).

ENABLE (0X0A)

Single byte command enables the unit. It will now respond to and execute commands.

DISPLAY ON (0X03)

Single byte command turns on the bezel light when the unit is enabled.

DISPLAY OFF (0X04)

Single byte command turns off the bezel light when the unit is enabled.

REJECT (0X08)

Single byte command causes the validator to reject the current note.

SETUP REQUEST (0X05)

For general information about the setup request see section 6.3.2. Single byte command.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 93

The below table displays the response data of the setup request and provides an example

of a real response from a unit with a Euro note dataset.

Return Data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Unit type. Single byte. 0x07 NV11 type.

2 Firmware version. 4 bytes.

Each byte represents an

ASCII character.

0x00 This gives 0335 when

converted to ASCII

characters. Formatted it

would read 3.35.

3 0x33

4 0x33

5 0x35

6 Country code of validator. 3

bytes. Each byte represents

an ASCII character.

0x45 When converted to ASCII

characters it reads EUR. 7 0x55

8 0x52

9 Value multiplier. 3 bytes.

Big endian.

0x00 When converted into a 24

bit integer it will have the

value 1.
10 0x00

11 0x01

12 Number of channels. 0x04 Four channels.

13* Channel values. Single byte

per channel.

0x05 Five.

14 0x0A Ten.

15 0x14 Twenty.

16 0x32 Fifty.

17* Channel security level.

Single byte per channel.

(Legacy code, now

deprecated).

0x02 Level 2.

18 0x02 Level 2.

19 0x02 Level 2.

20 0x02 Level 2.

21* Real value multiplier. 3

bytes. Big endian.

0x00 When converted into a 24

bit integer it will have the

value 100.
22 0x00

23 0x64

24* Protocol version. 0x07 Protocol version 7.

25* Country codes for each

channel. 3 bytes per

channel.

0x45 Each channel has the

country code EUR when

converted to an ASCII

character.

26 0x55

27 0x52

28 0x45

29 0x55

30 0x52

31 0x45

32 0x55

33 0x52

34 0x45

35 0x55

36 0x52

37* Channel values for each

channel. 4 bytes per

channel. Little endian.

0x05 When converted to a 32

bit integer, these values

come out at 5, 10, 20, 50.
38 0x00

39 0x00

40 0x00

41 0x0A

42 0x00

43 0x00

44 0x00

45 0x14

46 0x00

47 0x00

48 0x00

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 94

49 0x32

50 0x00

51 0x00

52 0x00

* - These sections’ start position and length in the array will vary depending on the number

of channels.

UNIT DATA (0X0D)

Single byte command causes the validator to return information about itself. It is similar to

the Setup Request command but a more concise version. It is intended for host machines

with limited resources. The below table displays the response data of the unit data request

and provides an example of a real response from a unit with a Euro note dataset.

Return Data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Unit type. Single byte. 0x00 Note validator type.

2 Firmware version. 4 bytes.

Each byte represents an

ASCII character.

0x00 This gives 0335 when

converted to ASCII

characters. Formatted it

would read 3.35.

3 0x33

4 0x33

5 0x35

6 Country code of validator. 3

bytes. Each byte represents

an ASCII character.

0x45 When converted to ASCII

characters it reads EUR. 7 0x55

8 0x52

9 Value multiplier. 3 bytes.

Big endian.

0x00 When converted into a 24

bit integer it will have the

value 1.
10 0x00

11 0x01

12 Protocol version. 0x07 Protocol version 7.

CHANNEL VALUE DATA (0X0E)

Single byte command causes the validator to return the number of channels it is using

followed by the value of each channel. The below table displays the response data of the

channel value data request and provides an example of a real response from a unit with a

Euro note dataset.

Return data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Number of channels. Single

byte.

0x04 Four channels.

2* Channel values. Single byte

per channel.

0x05 Five.

3 0x0A Ten.

4 0x14 Twenty.

5 0x32 Fifty.

* - This section’s length in the array will vary depending on the number of channels.

LAST REJECT CODE (0X17)

Single byte command causes the validator to report the reason for the last note being

rejected.

Return data:

Byte Description Response Example Response Explanation

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 95

0 Generic response. Single

byte.

0xF0 OK

1 Reject code. Single byte. 0x01 Note length incorrect. For

a full list of reject codes

see Appendix.

HOLD (0X18)

Single byte command causes the validator to hold the current accepted note if the

developer does not wish to accept or reject the note with the next command. This also

resets the 5 second escrow timer. (Normally after 5 seconds a note is automatically

rejected).

ENABLE PAYOUT DEVICE (0X5C)

Single byte command enables storing and paying out notes. Optionally can be sent with an

additional byte indicating whether the value of a note is passed with the Note Stored poll

response.

Sent data:

Byte Description Command Example Command Explanation

0 Command byte. 0x5C The enable payout device

command.

1 Optional: A bit register

where bit 0 (lsb) indicates

whether the value of the

note is passed with the

Note Stored poll response.

1 = Return the value.

0 = Don’t return the value.

0xFE

(11111110 in binary).

Setting value to not be

reported along with the

note stored poll response.

DISABLE PAYOUT DEVICE (0X5B)

Single byte command causes all notes to be routed to the cashbox and payout commands

will not be carried out but return the generic response 0xF5 with error code 0x04 meaning

that the NV11 payout device is disabled. For more info on generic responses see Appendix.

SET ROUTING (0X3B)

Variable byte command causes the validator to change the recycling status of a note. The

first byte of the data will be the route of the note. The next bytes can be different depending

on certain factors. If the value reporting type is set to channel, the next byte will be a single

byte indicating the channel of the note to change. If the value reporting type is set to value,

then the next four bytes will be the 4 byte value of the note.

After this there is 3 country code bytes that are only sent when using protocol version 6+.

Sent Data when using reporting by channel:

Byte Description Command Example Command Explanation

0 Command byte. 0x3B The set routing command.

1 The route of the note.

0 = Recycle.

1 = Don’t recycle.

0x00 Setting this note to

recycle.

2 The channel of the note. 0x01 Routing note on channel

1.

3 The currency of the note. 0x45 When converted to ASCII

characters this will be

EUR.
4 0x55

5 0x52

Sent Data when using reporting by value:

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 96

Byte Description Command Example Command Explanation

0 Command byte. 0x3B The set routing command.

1 The route of the note.

0 = Recycle.

1 = Don’t recycle.

0x00 Setting this note to

recycle.

2 The value of the note. Little

endian.

0xF4 When converted to a 32

bit integer this is 500. 3 0x01

4 0x00

5 0x00

6 The currency of the note. 0x45 When converted to ASCII

characters this will be

EUR.
7 0x55

8 0x52

GET ROUTING (0X3C)

Variable byte command that causes the validator to return the routing for a specific

note/channel. This command is the same as the set routing command with regard to the

variable length of the command.

Sent Data when using reporting by channel:

Byte Description Command Example Command Explanation

0 Command byte. 0x3C The set routing command.

1 The channel of the note. 0x01 Getting routing for note on

channel 1.

2 The currency of the note. 0x45 When converted to ASCII

characters this will be

EUR.
3 0x55

4 0x52

Sent Data when using reporting by value:

Byte Description Command Example Command Explanation

0 Command byte. 0x3C The set routing command.

1 The value of the note. 0xF4 Getting routing for a note

with value 500. 2 0x01

3 0x00

4 0x00

6 The currency of the note. 0x45 When converted to ASCII

characters this will be

EUR.
7 0x55

8 0x52

Return Data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Route of note.

0 = Note recycling.

1 = Note not recycling.

0x01 Note not recycling.

EMPTY (0X3F)

Single byte command causes the NV11 to empty all its stored notes to the cashbox.

GET NOTE POSITIONS (0X41)

Single byte command causes the validator to report the number of notes stored and the

value of the note in each position. The value reported is either the 4 byte value or the

channel number as set by the value reporting type.

Return Data when using reporting by channel:

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 97

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Number of notes stored.

Single byte.

0x02 2 notes stored.

2 Channel of notes stored. 1

byte per channel.

0x01 Both notes in storage are

on channel 1. 3 0x01

Return Data when using reporting by value:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Number of notes stored.

Single byte.

0x02 2 notes stored.

2 Value of notes stored. 4

bytes per value.

0xF4 Both notes in storage are

of value 500. 3 0x01

4 0x00

5 0x00

6 0xF4

7 0x01

8 0x00

9 0x00

PAYOUT NOTE (0X42)

Single byte command that causes the validator to payout the next available note stored in

the NV11 payout device, this will be the last note that was paid in.

STACK NOTE (0X43)

Single byte command that causes the validator to send the next available note from

storage to the cashbox.

SET VALUE REPORTING TYPE (0X45)

Two byte command that changes the way the validator reports the values of notes. There

are two options, by channel or by value. When channel is selected the channel number is

returned. When value is selected the full 4 byte note value is returned.

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x45 The set value reporting

type command.

1 The type of reporting to

use.

0 = By value.

1 = By channel.

0x00 Setting reporting type to

report by value.

POLL WITH ACK (0X56)

Single byte command causes the validator to respond to a poll in the same way as normal

but specified events will need to be acknowledged by the host using the EVENT ACK before

the validator will allow any further note action. If this command is not supported, 0xF2

(Unknown command) will be returned.

EVENT ACK (0X57)

Single byte command causes validator to continue with operations after it has been

sending a repeating Poll ACK response.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 98

GET NOTE COUNTERS (0X58)

Single byte command causes validator to report a set of global note counters that track

various note statistics. These counters will reset to zero and start again when their

maximum value is reached.

Return Data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Number of counters in the

set.

0x05 There are 5 counters in

the set.

2 Notes the validator has

stacked. 4 bytes. Little

endian.

0x01 1 note has been stacked.

3 0x00

4 0x00

5 0x00

6 Notes the validator has

stored. 4 bytes. Little

endian.

0x01 1 note has been stored.

7 0x00

8 0x00

9 0x00

10 Notes the validator has

dispensed.

0x00 No notes have been

dispensed. 11 0x00

12 0x00

13 0x00

14 Notes the validator has

moved from storage to the

cashbox.

0x00 No notes have been

moved from storage to the

cashbox.
15 0x00

16 0x00

17 0x00

18 Notes the validator has

rejected.

0x01 1 note has been rejected.

19 0x00

20 0x00

21 0x00

RESET NOTE COUNTERS (0X59)

Single byte command which causes the validator to reset all of its internal note counters to

zero.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 99

9.3 SMART PAYOUT

RESET (0X01)

Single byte command causes the unit to reset.

HOST PROTOCOL VERSION (0X06)

Two byte command sets the unit to report events up to and including those found in the

specified protocol version. Please note that the highest protocol version that a unit will

support is determined by its firmware. Please see the appendix for more information.

POLL (0X07)

Single byte command instructs the unit to report all the events that have occurred since the

last time a poll was sent to the unit. For a more detailed explanation of the poll command

and polling the unit, please see section 7 - Polling Devices.

GET SERIAL NUMBER (0X0C)

Single byte command causes the unit to report its unique serial number.

Return Data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Serial number. 4 bytes. Big

endian.

0x00 This serial number as a 32

bit integer is 2746699. 2 0x29

3 0xE9

4 0x4B

SYNCHRONISATION COMMAND (0X11)

This single byte command tells the unit that the next sequence ID will be 1. This is always

the first command sent to a unit, to prepare it to receive any further commands.

DISABLE (0X09)

This single byte command disables the unit. This means the unit will enter its disabled state

and not execute any further commands or perform any other actions. A poll to the unit

while in this state will report disabled (0xE8).

ENABLE (0X0A)

Single byte command enables the unit. It will now respond to and execute commands.

DISPLAY ON (0X03)

Single byte command turns on the bezel light when the unit is enabled.

DISPLAY OFF (0X04)

Single byte command turns off the bezel light when the unit is enabled.

REJECT (0X08)

Single byte command causes the validator to reject the current note.

SETUP REQUEST (0X05)

For general information about the setup request see section 6.3.2. Single byte command.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 100

The below table displays the response data of the setup request and provides an example

of a real response from a unit with a Euro note dataset.

Return Data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Unit type. Single byte. 0x06 SMART Payout type.

2 Firmware version. 4 bytes.

Each byte represents an

ASCII character.

0x00 This gives 0411 when

converted to ASCII

characters. Formatted it

would read 4.11.

3 0x34

4 0x31

5 0x31

6 Country code of validator. 3

bytes. Each byte represents

an ASCII character.

0x45 When converted to ASCII

characters it reads EUR. 7 0x55

8 0x52

9 Value multiplier. 3 bytes.

Big endian.

0x00 When converted into a 24

bit integer it will have the

value 1.
10 0x00

11 0x01

12 Number of channels. 0x04 Four channels.

13* Channel values. Single byte

per channel.

0x05 Five.

14 0x0A Ten.

15 0x14 Twenty.

16 0x32 Fifty.

17* Channel security level.

Single byte per channel.

(Legacy code, now

deprecated).

0x02 Level 2.

18 0x02 Level 2.

19 0x02 Level 2.

20 0x02 Level 2.

21* Real value multiplier. 3

bytes. Big endian.

0x00 When converted into a 24

bit integer it will have the

value 100.
22 0x00

23 0x64

24* Protocol version. 0x07 Protocol version 7.

25* Country codes for each

channel. 3 bytes per

channel.

0x45 Each channel has the

country code EUR when

converted to an ASCII

character.

26 0x55

27 0x52

28 0x45

29 0x55

30 0x52

31 0x45

32 0x55

33 0x52

34 0x45

35 0x55

36 0x52

37* Channel values for each

channel. 4 bytes per

channel. Little endian.

0x05 When converted to a 32

bit integer, these values

come out at 5, 10, 20, 50.
38 0x00

39 0x00

40 0x00

41 0x0A

42 0x00

43 0x00

44 0x00

45 0x14

46 0x00

47 0x00

48 0x00

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 101

49 0x32

50 0x00

51 0x00

52 0x00

* - These sections’ start position and length in the array will vary depending on the number

of channels.

UNIT DATA (0X0D)

Single byte command causes the validator to return information about itself. It is similar to

the Setup Request command but a more concise version. It is intended for host machines

with limited resources. The below table displays the response data of the unit data request

and provides an example of a real response from a unit with a Euro note dataset.

Return Data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Unit type. Single byte. 0x00 Note validator type.

2 Firmware version. 4 bytes.

Each byte represents an

ASCII character.

0x00 This gives 0411 when

converted to ASCII

characters. Formatted it

would read 4.11.

3 0x34

4 0x31

5 0x31

6 Country code of validator. 3

bytes. Each byte represents

an ASCII character.

0x45 When converted to ASCII

characters it reads EUR. 7 0x55

8 0x52

9 Value multiplier. 3 bytes.

Big endian.

0x00 When converted into a 24

bit integer it will have the

value 1.
10 0x00

11 0x01

12 Protocol version. 0x07 Protocol version 7.

CHANNEL VALUE DATA (0X0E)

Single byte command causes the validator to return the number of channels it is using

followed by the currency and value of each channel. The below table displays the response

data of the channel value data request and provides an example of a real response from a

unit with a Euro note dataset.

Return data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Number of channels. Single

byte.

0x02 Two channels.

2* Channel values. Single byte

per channel. Legacy code.

No longer needed.

0x01 1.

3 0x02 2.

4* Currency of channel, 3

bytes.

0x45 Converted to ASCII

characters this is EUR. 5 0x55

6 0x52

7 0x45 Converted to ASCII

characters this is EUR. 8 0x55

9 0x52

18* Value of channel, 4 bytes.

Little endian.

0x05 This value is 5.

19 0x00

20 0x00

21 0x00

22 0x0A This value is 10.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 102

23 0x00

24 0x00

25 0x00

* - These sections’ length in the array will vary depending on the number of channels.

LAST REJECT CODE (0X17)

Single byte command causes the validator to report the reason for the last note being

rejected.

Return data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Reject code. Single byte. 0x01 Note length incorrect. For

a full list of reject codes

Appendix.

HOLD (0X18)

Single byte command causes the validator to hold the current accepted note if the

developer does not wish to accept or reject the note with the next command. This also

resets the 5 second escrow timer. (Normally after 5 seconds a note is automatically

rejected).

GET BAR CODE READER CONFIGURATION (0X24)

Single byte command causes the validator to return the configuration data for attached bar

code readers if there is one present.

Return data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Bar code hardware status.

0x00 = None.

Ox01 = Top reader.

0x02 = Bottom reader.

0x03 = Both.

0x03 Both top and bottom

barcode readers detected.

2 Enabled status.

0x00 = None.

0x01 = Top.

0x02 = Bottom.

0x03 = Both.

0x03 Both top and bottom

barcode readers are

enabled.

3 Bar code format.

 (0x01 = interleaved 2 of 5)

0x00 Not interleaved 2 of 5.

4 Number of characters.

Min = 6. Max = 24.

0x0A 10 characters.

SET BAR CODE READER CONFIGURATION (0X23)

Four byte command sets up the validator’s bar code reader configuration.

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x23 The set bar code reader

configuration command.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 103

1 Enabled status.

0x00 = None.

0x01 = Top.

0x02 = Bottom.

0x03 = Both.

0x03 Enabling both top and

bottom barcode readers.

2 Bar code format.

 (0x01 = interleaved 2 of 5)

0x00 Not interleaved 2 of 5.

3 Number of characters.

Min = 6. Max = 24.

0x0A 10 characters.

GET BAR CODE INHIBIT (0X25)

Single byte command causes validator to return the current bar code/currency inhibit

status. This indicates whether the validator can accept only currency, only barcodes, both or

neither.

Return Data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 A bit register where bit 0

(lsb) indicates whether

currency is enabled. 0 =

Enabled. 1 = Disabled.

Bit 1 indicates whether the

bar code ticket is enabled.

0 = Enabled. 1 = Disabled.

0xFE

(11111110 in binary).

Currency is accepted,

barcodes are rejected.

SET BAR CODE INHIBIT (0X26)

Two byte command sets bar code/currency inhibits. When the unit is started up or reset,

the default is currency enabled, bar code disabled (0xFE).

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x26 The set bar code inhibit

command.

1 A bit register where bit 0

(lsb) indicates whether

currency is enabled. 0 =

Enabled. 1 = Disabled.

Bit 1 indicates whether the

bar code ticket is enabled.

0 = Enabled. 1 = Disabled.

0xFE

(11111110 in binary).

Setting currency to be

accepted, barcodes to be

rejected.

GET BAR CODE DATA (0X27)

Single byte command causes validator to return the last valid barcode ticket data.

Return data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 104

1 Status of the ticket. Single

byte.

0x00 = No valid data.

0x01 = Ticket in escrow.

0x02 = Ticket stacked.

0x03 = Ticket rejected.

0x00 No valid data.

2 Length of barcode data.

Single byte.

0x02 2 bytes of data follow this

length byte.

3* Barcode data. 0xB5 Example data.

4 0xB6 Example data.

* - The length of this section will vary based on the length of the barcode data.

ENABLE PAYOUT DEVICE (0X5C)

Single byte command enables storing and paying out notes.

DISABLE PAYOUT DEVICE (0X5B)

Single byte command causes all notes to be routed to the cashbox and payout commands

will not be carried out but instead return the generic response 0xF5 with error code 0x04

meaning that the Payout device is disabled. For more info on generic responses see

Appendix.

SET ROUTING (0X3B)

Nine byte command causes the validator to change the recycling status of a note. The first

byte of the data will be the route of the note. Then there are 4 bytes holding the value of the

note, finally there is 3 country code bytes.

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x3B The set routing command.

1 The route of the note.

0 = Recycle.

1 = Don’t recycle.

0x00 Setting this note to

recycle.

2 The value of the note. Little

endian.

0xF4 When converted to a 32

bit integer this is 500. 3 0x01

4 0x00

5 0x00

6 The currency of the note. 0x45 When converted to ASCII

characters this will be

EUR.
7 0x55

8 0x52

GET ROUTING (0X3C)

Nine byte command that causes the validator to return the routing for a specific note.

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x3C The set routing command.

1 The value of the note. 0xF4 Getting routing for a note

with value 500. 2 0x01

3 0x00

4 0x00

6 The currency of the note. 0x45 When converted to ASCII

characters this will be

EUR.
7 0x55

8 0x52

Return Data:

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 105

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Route of note.

0 = Note recycling.

1 = Note not recycling.

0x01 Note not recycling.

EMPTY (0X3F)

Single byte command causes the SMART Payout to empty all its stored notes to the

cashbox.

PAYOUT AMOUNT (0X33)

Variable byte command that instructs the payout device to payout a specified amount. The

developer can specify whether the payout is a “real” payout or a “test” payout. This can be

useful as it allows the developer to find out whether a payout could be made without

actually making the payout. This is done using an additional byte at the end of the standard

data. The example below demonstrates paying out €15.00.

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x33 The payout amount

command.

1 The value of the payout. 0xDC Paying out 1500 (penny

value). 2 0x05

3 0x00

4 0x00

6 The currency of the note. 0x45 When converted to ASCII

characters this will be

EUR.
7 0x55

8 0x52

9 The payout option, test or

real.

0x58 = Real.

0x19 = Test.

0x58 Real payout.

GET NOTE AMOUNT (0X35)

Variable byte command that causes the validator to report the amount of notes stored of a

specified denomination in the payout unit.

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x35 The get note amount

command.

1 The value of the note. 0xF4 Finding out how many

notes of value 500. 2 0x01

3 0x00

4 0x00

6 The currency of the note. 0x45 When converted to ASCII

characters this will be

EUR.
7 0x55

8 0x52

Return Data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Two byte value of the 0x01 There is one note stored.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 106

2 amount of notes of that

denomination and currency

stored. Little endian.

0x00

GET ALL LEVELS (0X22)

Single byte command that causes the SMART Payout to report the amount of notes stored

for all denominations.

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x22 Get all levels command.

Return Data:

Byte Description Response Example Response Explanation

0 Generic response. 0xF0 OK

1 Number of denominations 0x03 3 denominations

2 Two byte count of denom 1

coins stored. Little endian.

0x05 5 notes stored

3 0x00

4 Four byte value of denom

1. Little endian.

0xF4 Value 500

5 0x01

6 0x00

7 0x00

8 3 byte currency code of

denom 1.

0x45 When converted to ASCII

characters this will be

EUR.
9 0x55

10 0x52

11 Two byte count of denom 2

coins stored. Little endian.

0x0E 15 notes stored

12 0x00

13 Four byte value of denom

2. Little endian.

0xE8 Value 1000

14 0x03

15 0x00

16 0x00

17 3 byte currency code of

denom 2.

0x45 When converted to ASCII

characters this will be

EUR.
18 0x55

19 0x52

20 Two byte count of denom 3

coins stored. Little endian.

0x05 5 notes stored

21 0x00

22 Four byte value of denom

3. Little endian.

0xD0 Value 2000

23 0x07

24 0x00

25 0x00

26 3 byte currency code of

denom 3.

0x45 When converted to ASCII

characters this will be

EUR.
27 0x55

28 0x52

HALT PAYOUT (0X38)

Single byte command that causes the current payout to stop.

FLOAT AMOUNT (0X3D)

Variable byte command that causes the validator to keep a set amount “floating” in the

payout and specifies a minimum payout value. In a similar way to the Payout Amount

command there is an option byte at the end to make a “real” float or a “test” float.

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x35 The get note amount

command.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 107

1 The minimum payout that

should be available in the

Payout.

0xF4 Minimum payout set to

500 (penny value). 2 0x01

3 0x00

4 0x00

6 The float amount that

should be left in the

Payout.

0x10 Leaving 10000 (penny

value) in the payout. 7 0x27

8 0x00

9 0x00

10 The currency of the float. 0x45 When converted to ASCII

characters this is EUR. 11 0x55

12 0x52

13 The float option, test or

real.

0x58 = Real.

0x19 = Test.

0x58 Performing a real float.

GET MINIMUM PAYOUT (0X3E)

Variable byte command causes the validator to report its current minimum payout of a

specific currency.

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x3E The get minimum payout

command.

1 The currency of the

minimum payout.

0x45 Converted to ASCII

characters this would be

EUR.
2 0x55

3 0x52

Return Data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Four byte value of the

minimum payout. Little

endian.

0xF4 The minimum payment is

500 (penny value). 2 0x01

3 0x00

4 0x00

PAYOUT BY DENOMINATION (0X46)

Variable byte command that instructs the validator to payout the requested number of a

denomination of a note. This differs from a standard payout command (0x33) in that the

developer specifies exactly which notes to payout. In the standard payout, the validator

decides, based on the total amount the developer sends it.

The following tables use the example of a developer wanting to payout 5 X 5.00 EUR notes

and 5 X 10.00 EUR notes.

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x46 The payout by

denomination command.

1 Number of different

denominations to payout.

0x02 Two denominations

required.

2* Number of the first

denomination to payout.

Two bytes.

0x05 Payout 5 of this

denomination. 3 0x00

4 Value of this denomination. 0xF4 This denomination’s value

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 108

5 4 bytes. 0x01 is 500 (penny value).

6 0x00

7 0x00

8 Country code of this

denomination.

0x45 The country code when

converted to ASCII

characters is EUR.
9 0x55

10 0x52

11 Number of the second

denomination to payout.

0x05 Payout 5 of this

denomination. 12 0x00

13 Value of this denomination. 0xE8 This denomination’s value

is 1000 (penny value). 14 0x03

15 0x00

16 0x00

17 Country code of this

denomination.

0x45 The country code when

converted to ASCII

characters is EUR.
18 0x55

19 0x52

20 The payout option.

58 = real payout.

19 = test payout.

0x58 Perform a real payout.

* - The length of this section will vary based on the number of denominations being paid

out.

FLOAT BY DENOMINATION (0X44)

Variable byte command that instructs the validator to float individual quantities of a

denomination in the SMART payout. It follows a similar format to the Payout by

Denomination command.

The following tables use the example of a developer wanting to float 5 X 5.00 EUR notes

and 5 X 10.00 EUR notes.

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x44 The float by denomination

command.

1 Number of different

denominations to float.

0x02 Two denominations

required.

2* Number of the first

denomination to float. Two

bytes.

0x05 Float 5 of this

denomination. 3 0x00

4 Value of this denomination.

4 bytes.

0xF4 This denomination’s value

is 500 (penny value). 5 0x01

6 0x00

7 0x00

8 Country code of this

denomination.

0x45 The country code when

converted to ASCII

characters is EUR.
9 0x55

10 0x52

11* Number of the second

denomination to float.

0x05 Float 5 of this

denomination. 12 0x00

13 Value of this denomination. 0xE8 This denomination’s value

is 1000 (penny value). 14 0x03

15 0x00

16 0x00

17 Country code of this

denomination.

0x45 The country code when

converted to ASCII

characters is EUR.
18 0x55

19 0x52

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 109

20 The payout option.

58 = real float.

19 = test float.

0x58 Perform a real float.

* - The length of this section will vary based on the number of denominations being floated.

SMART EMPTY (0X52)

Single byte command that causes the validator to empty all its stored notes to the cashbox

and also keep a count of the value emptied. This information can be retrieved using the

cashbox payout operation data command once the payout is empty.

CASHBOX PAYOUT OPERATION DATA (0X53)

Single byte command that instructs the validator to return the amount emptied from the

payout to the cashbox in the last dispense, SMART empty or float operation.

Return Data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Number of denominations

in this response. Single

byte.

0x02 Two denominations.

2* Number of the first

denomination moved. Two

bytes.

0x01 Moved 1 of this

denomination. 3 0x00

4 Value of the denomination

moved. 4 bytes.

0xF4 The value of this

denomination is 500

(penny value).
5 0x01

6 0x00

7 0x00

8 Country code of the

denomination moved.

0x45 When converted to ASCII

characters this is EUR. 9 0x55

10 0x52

11 Number of the first

denomination moved. Two

bytes.

0x00 Moved none of this

denomination. 12 0x00

13 Value of the denomination

moved. 4 bytes.

0xE8 The value of this

denomination is 500

(penny value).
14 0x03

15 0x00

16 0x00

17 Country code of the

denomination moved.

0x45 When converted to ASCII

characters this is EUR. 18 0x55

19 0x52

20** Number of notes that were

moved but not recognised.

4 bytes.

0x00 No notes were moved

without being recognised. 21 0x00

22 0x00

23 0x00

* - The length of this section will vary based on the number of denominations being

reported.

** - The position of this section will vary based on the number of denominations reported.

POLL WITH ACK (0X56)

Single byte command causes the validator to respond to a poll in the same way as normal

but specified events will need to be acknowledged by the host using the EVENT ACK before

the validator will allow any further note action. If this command is not supported, 0xF2

(Unknown command) will be returned.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 110

EVENT ACK (0X57)

Single byte command causes validator to continue with operations after it has been

sending a repeating Poll ACK response.

GET NOTE COUNTERS (0X58)

Single byte command causes validator to report a set of global note counters that track

various note statistics. These counters will reset to zero and start again when their

maximum value is reached.

Return Data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Number of counters in the

set.

0x05 There are 5 counters in

the set.

2 Notes the validator has

stacked. 4 bytes. Little

endian.

0x01 1 note has been stacked.

3 0x00

4 0x00

5 0x00

6 Notes the validator has

stored. 4 bytes. Little

endian.

0x01 1 note has been stored.

7 0x00

8 0x00

9 0x00

10 Notes the validator has

dispensed.

0x00 No notes have been

dispensed. 11 0x00

12 0x00

13 0x00

14 Notes the validator has

moved from storage to the

cashbox.

0x00 No notes have been

moved from storage to the

cashbox.
15 0x00

16 0x00

17 0x00

18 Notes the validator has

rejected.

0x01 1 note has been rejected.

19 0x00

20 0x00

21 0x00

RESET NOTE COUNTERS (0X59)

Single byte command which causes the validator to reset all of its internal note counters to

zero.

SET REFILL MODE (0X30)

Five or six byte command sequence which causes the payout to change or report its refill

mode. By default if a note is inserted which the firmware determines is unsuitable for

storage, it is sent to the cashbox instead. If the refill mode is active then the note is

rejected from the front of the validator to make refilling more convenient for the user. This

command is sent as a sequence of bytes and is only available in firmware 4.10+.

Sent Data:

Byte Description Command Example Command Explanation

0 The first command byte of

the sequence.

0x30 Set refill mode command

byte.

1 The next three bytes are

the command sequence

bytes. They are always the

same.

0x05 Set refill mode command

sequence. 2 0x81

3 0x10

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 111

4 This byte is the read/write

option byte.

0x11 = write

0x01 = read

0x11 This will set the mode to

write.

5 The option byte, sets refill

mode either on or off.

0x00 = no refill mode.

0x01 = refill mode.

If the previous byte is read

(0x01) then the response

will indicate the validator’s

current refill mode and this

byte does not need to be

included.

0x01 Set validator to refill

mode.

Return Data (if byte 4 in the above command is set to read (0x01)):

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Refill mode.

0x00 – no refill mode.

0x01 – refill mode.

0x01 Refill mode is on.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 112

9.4 SMART HOPPER

RESET (0X01)

Single byte command causes the unit to reset.

HOST PROTOCOL VERSION (0X06)

Two byte command sets the unit to report events up to and including those found in the

specified protocol version. Please note that the highest protocol version that a unit will

support is determined by its firmware. Please see the appendix for more information.

POLL (0X07)

Single byte command instructs the unit to report all the events that have occurred since the

last time a poll was sent to the unit. For a more detailed explanation of the poll command

and polling the unit, please see section 7 - Polling Devices.

GET SERIAL NUMBER (0X0C)

Single byte command causes the unit to report its unique serial number.

Return Data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Serial number. 4 bytes. Big

endian.

0x00 This serial number as a 32

bit integer is 2746699. 2 0x29

3 0xE9

4 0x4B

SYNCHRONISATION COMMAND (0X11)

This single byte command tells the unit that the next sequence ID will be 1. This is always

the first command sent to a unit, to prepare it to receive any further commands.

DISABLE (0X09)

This single byte command disables the unit. This means the unit will enter its disabled state

and not execute any further commands or perform any other actions. A poll to the unit

while in this state will report disabled (0xE8).

ENABLE (0X0A)

Single byte command enables the unit. It will now respond to and execute commands.

SETUP REQUEST (0X05)

For general information about the setup request see section 6.3.2. Single byte command.

The below table displays the response data of the setup request and provides an example

of a real response from a SMART Hopper with a Euro coin dataset.

Return Data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Unit type. Single byte. 0x03 SMART Hopper type.

2 Firmware version. 4 bytes. 0x00 This reads as 0612 when

converted to ASCII

characters. Formatted it

reads 6.12.

3 0x36

4 0x31

5 0x32

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 113

6 Country code of validator. 3

bytes. Each byte represents

an ASCII character.

0x45 When converted to ASCII

characters it reads EUR. 7 0x55

8 0x52

9 Protocol version. Single

byte.

0x07 Protocol version 7.

10 Number of channels. 0x07 Seven channels.

11* Value of channels. Two

bytes per channel. Little

endian.

0x02 Value is 2 (penny value).

12 0x00

13 0x05 Value is 5 (penny value).

14 0x00

15 0x0A Value is 10 (penny value).

16 0x00

17 0x14 Value is 20 (penny value).

18 0x00

19 0x32 Value is 50 (penny value).

20 0x00

21 0x64 Value is 100 (penny

value). 22 0x00

23 0xC8 Value is 200 (penny

value). 24 0x00

25* Country codes of channels.

3 bytes per channel.

0x45 Converted to ASCII

characters this reads EUR. 26 0x55

27 0x52

28 0x45 Converted to ASCII

characters this reads EUR. 29 0x55

30 0x52

31 0x45 Converted to ASCII

characters this reads EUR. 32 0x55

33 0x52

34 0x45 Converted to ASCII

characters this reads EUR. 35 0x55

36 0x52

37 0x45 Converted to ASCII

characters this reads EUR. 38 0x55

39 0x52

40 0x45 Converted to ASCII

characters this reads EUR. 41 0x55

42 0x52

43 0x45 Converted to ASCII

characters this reads EUR. 44 0x55

45 0x52

* - The positions and/or lengths of these sections depend on the number of channels being

used by the validator.

SET ROUTING (0X3B)

Eight byte command causes the SMART Hopper to change the recycling status of a coin.

The first byte of the data will be the route of the coin. Then there 4 bytes holding the value

of the coin, finally there is 3 country code bytes.

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x3B The set routing command.

1 The route of the coin.

0 = Recycle.

1 = Don’t recycle.

0x00 Setting this coin to

recycle.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 114

2 The value of the coin. Little

endian.

0xC8 When converted to a 32

bit integer this is 200. 3 0x00

4 0x00

5 0x00

6 The currency of the coin. 0x45 When converted to ASCII

characters this will be

EUR.
7 0x55

8 0x52

GET ROUTING (0X3C)

Nine byte command that causes the validator to return the routing for a specific coin.

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x3C The set routing command.

1 The value of the coin. 0xC8 Getting routing for a coin

with value 200. 2 0x00

3 0x00

4 0x00

6 The currency of the coin. 0x45 When converted to ASCII

characters this will be

EUR.
7 0x55

8 0x52

PAYOUT AMOUNT (0X33)

Ten byte command that instructs the Hopper to payout a specified amount. The developer

can specify whether the payout is a “real” payout or a “test” payout. This can be useful as it

allows the developer to find out whether a payout could be made without actually making

the payout. This is done using an additional byte at the end of the standard data. The

example below demonstrates paying out €12.46.

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x33 The payout amount

command.

1 The value of the payout. 0xDE Paying out 1246 (penny

value). 2 0x04

3 0x00

4 0x00

6 The currency of the note. 0x45 When converted to ASCII

characters this will be

EUR.
7 0x55

8 0x52

9 The payout option, test or

real.

0x58 = Real.

0x19 = Test.

0x58 Real payout.

GET COIN AMOUNT (0X35)

Variable byte command that causes the SMART Hopper to report the amount of coins

stored of a specified denomination.

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x35 The get coin amount

command.

1 The value of the coin. 0xC8 Finding out how many

coins of value 200. 2 0x00

3 0x00

4 0x00

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 115

6 The currency of the coin. 0x45 When converted to ASCII

characters this will be

EUR.
7 0x55

8 0x52

Return Data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Two byte value of the

amount of coins of that

denomination and currency

stored. Little endian.

0x32 There are fifty coins

stored. 2 0x00

GET ALL LEVELS (0X22)

Single byte command that causes the SMART Hopper to report the amount of coins stored

for all denominations.

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x22 Get all levels command.

Return Data:

Byte Description Response Example Response Explanation

0 Generic response. 0xF0 OK

1 Number of denominations 0x03 3

2 Two byte count of denom 1

coins stored. Little endian.

0x2E 46 coins stored

3 0x00

4 Four byte value of denom

1. Little endian.

0x32 Value 50

5 0x00

6 0x00

7 0x00

8 3 byte currency code of

denom 1.

0x45 When converted to ASCII

characters this will be

EUR.
9 0x55

10 0x52

11 Two byte count of denom 2

coins stored. Little endian.

0x4B 75 coins stored

12 0x00

13 Four byte value of denom

2. Little endian.

0x32 Value 100

14 0x00

15 0x00

16 0x00

17 3 byte currency code of

denom 2.

0x45 When converted to ASCII

characters this will be

EUR.
18 0x55

19 0x52

20 Two byte count of denom 3

coins stored. Little endian.

0x18 24 coins stored

21 0x00

22 Four byte value of denom

3. Little endian.

0x32 Value 200

23 0x00

24 0x00

25 0x00

26 3 byte currency code of

denom 3.

0x45 When converted to ASCII

characters this will be

EUR.
27 0x55

28 0x52

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 116

SET COIN AMOUNT (0X34)

Nine byte command that increases the level of a particular denomination of coin in the

SMART Hopper by a specified amount. Note that although the start of this command name

is “set”, it actually increments the level, not sets it.

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x34 The set coin amount

command.

1 The number of coins to add

to the level of this

denomination. 2 bytes.

0x0A Adding 10 coins.

2 0x00

3 The value of the

denomination. 4 bytes.

0x32 The denomination value is

50 (penny value). 4 0x00

5 0x00

6 0x00

7 The country code of the

denomination. 3 bytes.

0x45 The country code when

converted to ASCII

characters is EUR.
8 0x55

9 0x52

HALT PAYOUT (0X38)

Single byte command that halts the current payout.

FLOAT AMOUNT (0X3D)

Fourteen byte command that causes the validator to keep a set amount “floating” in the

SMART Hopper and specifies a minimum payout value. In a similar way to the Payout

Amount command there is an option byte at the end to make a “real” float or a “test” float.

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x35 The get note amount

command.

1 The minimum payout that

should be available to

payout in the SMART

Hopper.

0x32 Minimum payout set to 50

(penny value). 2 0x00

3 0x00

4 0x00

6 The float amount that

should be left in the SMART

Hopper.

0x10 Leaving 10000 (penny

value) in the payout. 7 0x27

8 0x00

9 0x00

10 The currency of the float. 0x45 When converted to ASCII

characters this is EUR. 11 0x55

12 0x52

13 The float option, test or

real.

0x58 = Real.

0x19 = Test.

0x58 Performing a real float.

GET MINIMUM PAYOUT (0X3E)

Variable byte command causes the SMART Hopper to report its current minimum payout of

a specific currency.

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x3E The get minimum payout

command.

1 The currency of the 0x45 Converted to ASCII

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 117

2 minimum payout. 0x55 characters this would be

EUR. 3 0x52

Return Data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Four byte value of the

minimum payout. Little

endian.

0x32 The minimum payment is

50 (penny value). 2 0x00

3 0x00

4 0x00

SET COIN MECH INHIBITS (0X40)

Seven byte command causes the SMART Hopper to disable or enable acceptance of

individual coin denominations by an attached coin mechanism. If this command is sent to a

SMART Hopper with no coin mechanism attached then it will return the generic response

0xF3 (Wrong Parameters) for more info on generic responses see Appendix.

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x40 The set coin mech inhibits

command.

1 Inhibition status of coin.

0 = inhibited

1 = uninhibited

0x00 Inhibiting this coin.

2 The value of the coin. Two

bytes.

0x02 The coin value is 2 (penny

value). 3 0x00

4 The country code of the

coin.

0x45 When converted to ASCII

characters this reads EUR. 5 0x55

6 0x52

PAYOUT BY DENOMINATION (0X46)

Variable byte command that instructs the SMART Hopper to payout the requested number

of a denomination of coin. This differs from a standard payout command (0x33) in that the

developer specifies exactly which coins to payout. In the standard payout, the SMART

Hopper decides which coins to payout, based on the total amount the developer sends it.

The following tables use the example of a developer wanting to payout 5 X 0.50 EUR coins

and 5 X 1.00 EUR coins.

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x46 The payout by

denomination command.

1 Number of different

denominations to payout.

0x02 Two denominations

required.

2* Number of the first

denomination to payout.

Two bytes.

0x05 Payout 5 of this

denomination. 3 0x00

4 Value of this denomination.

4 bytes.

0x32 This denomination’s value

is 50 (penny value). 5 0x00

6 0x00

7 0x00

8 Country code of this

denomination.

0x45 The country code when

converted to ASCII

characters is EUR.
9 0x55

10 0x52

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 118

11 Number of the second

denomination to payout.

0x05 Payout 5 of this

denomination. 12 0x00

13 Value of this denomination. 0x64 This denomination’s value

is 100 (penny value). 14 0x00

15 0x00

16 0x00

17 Country code of this

denomination.

0x45 The country code when

converted to ASCII

characters is EUR.
18 0x55

19 0x52

20 The payout option.

58 = real payout.

19 = test payout.

0x58 Perform a real payout.

* - The length of this section will vary based on the number of denominations being paid

out.

FLOAT BY DENOMINATION (0X44)

Variable byte command that instructs the SMART Hopper to float the requested number of

a denomination of coin.

The following tables use the example of a developer wanting to float 5 X 0.50 EUR coins

and 5 X 1.00 EUR coins.

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x44 The float by denomination

command.

1 Number of different

denominations to float.

0x02 Two denominations

required.

2* Number of the first

denomination to float. Two

bytes.

0x05 Float 5 of this

denomination. 3 0x00

4 Value of this denomination.

4 bytes.

0x32 This denomination’s value

is 50 (penny value). 5 0x00

6 0x00

7 0x00

8 Country code of this

denomination.

0x45 The country code when

converted to ASCII

characters is EUR.
9 0x55

10 0x52

11 Number of the second

denomination to float. Two

bytes.

0x05 Float 5 of this

denomination. 12 0x00

13 Value of this denomination. 0x64 This denomination’s value

is 100 (penny value). 14 0x00

15 0x00

16 0x00

17 Country code of this

denomination.

0x45 The country code when

converted to ASCII

characters is EUR.
18 0x55

19 0x52

20 The float option.

58 = real float.

19 = test float.

0x58 Perform a real float.

* - The length from this byte onwards will vary based on the number of denominations

being floated.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 119

SET COMMAND CALIBRATION (0X47)

Two byte command that causes the SMART Hopper to set its calibration mode to either

“auto calibration” or “command calibration”. Auto calibration is the default mode and will

run the calibration at intervals determined by the firmware. In command calibration mode

the SMART Hopper will only run its calibration sequence when commanded by the host. If

the host does not send a calibration command within the calibration period, the SMART

Hopper will respond with a calibration fail event until the Run Command Calibration

command is sent.

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x47 The set command

calibration command.

1 The calibration mode.

0 = Auto.

1 = Command.

0x00 Setting the calibration

mode to auto.

RUN COMMAND CALIBRATION (0X48)

Depreciated and no longer used.

EMPTY ALL (0X3F)

Single byte command that causes the SMART Hopper to empty all its stored coins to the

cashbox.

SET OPTIONS (0X50)

Two byte command that sets various options on the SMART Hopper. These options are

volatile and will not persist in memory after a reset. This command is only available in

firmware 6.04+.

The command works by sending two bytes which act as bit registers after the command

byte. The first bit register looks as follows:

REGISTER 1

Not

used.

Not

used.

Not

used.

Not

used.

Cashbox

Pay.

Motor

Speed.

Level

Check.

Pay

Mode.

Pay Mode – This can either be set to free pay (1) or split by highest value (0). When free pay

is selected the Hopper pays out the first coins that pass its discriminator system if it fits

into the current payout value and will leave enough of other coins to payout the remaining

value. This gives faster payouts but could result in lots of small denomination coins being

paid out. This is the default state after the unit is reset.

The other pay mode is split by highest value where the Hopper attempts to pay from the

highest value coin it can, this will payout the minimum number of coins possible.

Level Check – When the level check is enabled (1) the Hopper will check the levels of coins

before it tries to make a payout. When this is disabled the Hopper will attempt to payout

any amount without checking the levels first.

Motor Speed – Payouts will run at a lower motor speed when this is set to 0. When set to 1

the motor runs at max speed.

Cashbox Pay – This works in conjunction with the pay mode bit. If this bit is 0 then the pay

modes will be as described in the pay mode bit. When this bit is 1 then coins routed to the

cashbox will be used in coins paid out of the front, if they fit in the current payout request.

This table shows the relation:

Cashbox Pay Bit Pay Mode Bit Pay Mode

0 0 Split by highest value

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 120

0 1 Free pay

1 0 Split by highest, use cashbox

coins in split.

0 1 Free pay, use cashbox coins

in pay.

The second bit register is not used at present and should be set to 0x00.

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x50 The set options command.

1 Register 1. 0x06 Setting cashbox pay to

false, motor speed to

highest, level check to

true and pay mode to split

by highest value.

(00000110).

2 Register 2. 0x00 Not used.

GET OPTIONS (0X51)

Single byte command that instructs the SMART Hopper to return the two option bytes

described in the set options command.

Return Data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Register 1. 0x06 Cashbox pay is false,

motor speed is highest,

level check is true and pay

mode to split by highest

value is set. (00000110).

2 Register 2 0x00 Not used.

COIN MECH GLOBAL INHIBIT (0X49)

Two byte command that causes a coin acceptor attached to the SMART Hopper to inhibit or

un-inhibit all of its channels (effectively disabling or enabling the coin mechanism). Please

note, if this command is sent to a SMART Hopper without a coin mechanism attached, it

will return the generic response 0xF3 (wrong parameters).

Sent Data:

Byte Description Command Example Command Explanation

0 Command byte. 0x50 The set options command.

1 Inhibit mode.

0 = All inhibited.

1 = None inhibited.

0x01 Enable all channels.

SMART EMPTY (0X52)

Single byte command that causes the validator to empty all its stored coins to the cashbox

and also keep a count of the value emptied. This information can be retrieved using the

Cashbox Payout Operation Data command once the SMART Hopper is empty.

CASHBOX PAYOUT OPERATION DATA (0X53)

Single byte command that instructs the SMART Hopper to return the amount emptied from

the payout to the cashbox in the last dispense, SMART empty or float operation.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 121

Return Data:

Byte Description Response Example Response Explanation

0 Generic response. Single

byte.

0xF0 OK

1 Number of denominations

in this response. Single

byte.

0x02 Two denominations.

2* Number of the first

denomination moved. Two

bytes.

0x0A Moved 10 of this

denomination. 3 0x00

4 Value of the denomination

moved. 4 bytes.

0x32 The value of this

denomination is 50

(penny value).
5 0x00

6 0x00

7 0x00

8 Country code of the

denomination moved.

0x45 When converted to ASCII

characters this is EUR. 9 0x55

10 0x52

11 Number of the first

denomination moved. Two

bytes.

0x00 Moved none of this

denomination. 12 0x00

13 Value of the denomination

moved. 4 bytes.

0x64 The value of this

denomination is 100

(penny value).
14 0x00

15 0x00

16 0x00

17 Country code of the

denomination moved.

0x45 When converted to ASCII

characters this is EUR. 18 0x55

19 0x52

20** Number of notes that were

moved but not recognised.

4 bytes.

0x00 No notes were moved

without being recognised. 21 0x00

22 0x00

23 0x00

POLL WITH ACK (0X56)

Single byte command causes the SMART Hopper to respond to a poll in the same way as

normal but specified events will need to be acknowledged by the host using the EVENT ACK

before the unit will allow any further note action. If this command is not supported, 0xF2

(Unknown command) will be returned.

EVENT ACK (0X57)

Single byte command causes SMART Hopper to continue with operations after it has been

sending a repeating Poll ACK response.

COIN MECH OPTIONS (0X5A)

The host can set the following options for the Smart Hopper. These options do not persist in

memory and after a reset they will go to their default values.

REG 0 Parameter

Bit 0 Coin Mech error events

1 = ccTalk format,

0 = Coin mech jam and Coin return mech open only

Bit 1 Not used – set to 0

Bit 2 Not used – set to 0

Bit 3 Not used – set to 0

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 122

Bit 4 Not used – set to 0

Bit 5 Not used – set to 0

Bit 6 Not used – set to 0

Bit 7 Not used – set to 0

If coin mech error events are set to ccTalk format, then event Coin Mech Error 0xB7 is given

with 1 byte ccTalk coin mech error reason directly from coin mech ccTalk event queue

(listed below, from ccTalk Specification v4.6). Otherwise only error events Coin Mech Jam

0xC4 and Coin Mech Return 0xC5 are given.

Code Error Code Error

0 Null event (error) 21 DCE opto timeout

1 Reject coin 22 DCE opto seen

2 Inhibited coin 23 Credit sensor reached too early

3 Multiple window 24 Reject coin

(repeated sequential trip)

4 Wake-up timeout 25 Reject slug

5 Validation timeout 26 Reject sensor blocked

6 Credit sensor timeout 27 Games overload

7 Sorter opto timeout 28 Max. coin meter pulses exceeded

8 2nd close coin error 29 Accept gate open closed

9 Accept gate ready 30 Accept gate closed open

10 Credit sensor ready 31 Manifold opto timeout

11 Sorter ready 32 Manifold opto blocked

12 Reject coin cleared 33 Manifold ready

13 Validation sensor ready 34 Security status changed

14 Credit sensor blocked 35 Motor exception

15 Sorter opto blocked 128 Inhibited coin (Type 1)

16 Credit sequence error … Inhibited coin (Type n)

17 Coin going backwards 159 Inhibited coin (Type 32)

18 Coin too fast (over credit sensor) 253 Data block request

19 Coin too slow (over credit sensor) 254 Coin return mechanism activated

(flight deck open)

20 C.O.S. (coin-on-string) mechanism

activated

255 Unspecified alarm code

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 123

10 UPDATING DEVICES IN SSP

As part of our continued development and improvement, Innovative Technology Ltd

periodically releases new dataset or firmware for our validators. This could be for improved

acceptance, additional features or security updates.

We recommend that network connected cabinets and applications communicating in SSP

have the functionality to update the devices attached through the application software. We

can provide DLLs and libraries to assist with this development. Please contact your local

support office with your requirements for more assistance.

This section outlines the software processes involved in updating a validator with a new

dataset/firmware file. Implementation of this process allows a validator to be updated

from a remote location using the host machine software.

10.1 FILE STRUCTURE

A firmware/dataset file is composed of the following sections:

The Header block contains details about the file including validator type, versioning

information and download configuration data used by the validator during the update.

The RAM block contains the code run on the validator during the update process. This

controls the operation of the validator during the update process and is erased on reset or

power loss.

The Firmware/Dataset block contains the update that will be applied to the validator.

EUR02604_NV02004141498000_IF_01.bv1

RAM block

(variable length

≈10kb)

Header

block

(128

bytes)

Firmware/Dataset block

(variable length ≈ 300kb)

NOTE

This is a complex operation and failure to implement correctly may damage units. Please

exercise extreme caution when writing firmware to the device.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 124

10.2 PROCESS OVERVIEW

Below is a summary of the download process, more detail on each stage of the download is

included in later sections.

Read dataset/firmware file into a locally stored buffer.

Check first 3 bytes of buffer are “I”, “T” and “L”. (0x49, 0x54, 0x4C).

Sync [11]

OK [F0]

Open COM port.

Program RAM file [0B][03]

OK, block size of 4096

[F0][00][16]
Send 128 byte header from stored

buffer […]
OK [F0]

Set baud rate to 38400.

Get RAM file size from buffer at indices 7-10. This is a 32 bit big endian

number. Divide this size by 128 to get the number of blocks to transfer.

Send each 128 byte block to the

validator […]

Checksum [26]

Check the received checksum matches the calculated checksum.

Halt execution of software for 2.5 seconds to allow validator to execute the

RAM file code. Discard the receive buffer and obtain the update code from the

stored buffer at index 6.

More Blocks?

Calculate XOR checksum on each byte as it is sent.

Yes

No

Checksum is

returned as a

single byte

automatically at

the end of the RAM

download.

0x26 here is just

an example.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 125

Sync will return

OK (0xF0) only

once it has reset

and is available

to communicate

again.

Calculate total size of file to transmit (Buffer size – 128 (header) – RAM size).

Divide this total size by the block size which was returned by the Program RAM

file command. This gives the number of blocks the validator is expecting.

Checksum [84]

Check the received checksum matches the transmitted checksum

Once all blocks have transferred, the unit will reset.

Close COM port, set baud rate to 9600 and re-open COM port.

Sync [11]

OK [F0]

Send single byte update code

obtained from buffer (index 6) [80]

ACK [32]

Send 128 byte header from stored

buffer […]
ACK [32]

More Blocks?

Yes

No

Send 128 byte section to

validator. […]

Divide block into 128 byte long sections.

(For 4096 byte block, this would be 32 sections)

More Sections?

Yes

No

Checksum [84]

Calculate XOR checksum on each byte as it is sent.

Sync [11]

Checksum is

sent and

returned as a

single byte at the

end of the

section transfer.

0x84 here is just

an example.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 126

10.3 PROCESS DETAILS

10.3.1 CONFIRMING THE PRESENCE OF THE VALIDATOR

This is done by sending the SSP Sync command (0x11) to the validator.

The response received should be OK (0xF0) confirming the validator is responding to

comms.

cmd.CommandData[0] = 0x11;
cmd.CommandDataLength = 0x01;
if (!SSPSendCommand(cmd, info) || cmd.ResponseData[0] != 0xF0)
 return false;

10.3.2 SENDING THE PROGRAMMING COMMAND AND RETRIEVING THE BLOCK SIZE

The next SSP command is sent to prepare the validator to begin the programming

procedure.

The command sent is 0x0B, this is a two byte command, the second byte contains the

programming the validator can expect to receive. In this case the second byte should be

0x03, this is the RAM programming command. The RAM file is transferred to the validator

before the firmware/dataset file is transferred. The validator updates itself based on this

RAM code rather than on code stored previously in the validator.

The OK (0xF0) response should be received from this command along with the size of the

block that the validator will expect data to be transferred in. This size is a 2 byte little

endian number and follows the OK response.

cmd.CommandData[0] = 0x0B;
cmd.CommandData[1] = 0x03;
cmd.CommandDataLength = 0x02;
if (!SSPSendCommand(cmd, info))
 return false;

// Obtain block size from response (16 bit / 2 bytes)
if (cmd.ResponseData[0] = 0xF0)
{
 short blockSize;
 blockSize = cmd.ResponseData[1];
 blockSize += (short)(cmd.ResponseData[2] << 8);
}

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 127

10.3.3 SENDING THE HEADER BLOCK TO THE VALIDATOR

The header block is simply the first 128 bytes of the main firmware/dataset file. This is

transmitted to the validator as an SSP command.

The command data simply contains the first 128 bytes from the file with a length set to

128.

The response received should be OK (0xF0) if the file is the correct type for this validator, or

HEADER_FAIL (0xF9) if this file cannot be used to update this validator.

// Send header file
for (int i = 0; i < 128; ++i)
 cmd.CommandData[i] = (byte)fileBuffer[i];
cmd.CommandDataLength = 128;

if (SSPSendCommand(cmd, info))
{
 if (cmd.ResponseData[0] == 0xF9)
 {
 return false;
 }
}

10.3.4 SENDING THE RAM FILE TO THE VALIDATOR

From this point, the SSP command packet format is not used. The data is written directly to

the validator using the serial port.

The RAM file is stored in the main firmware/dataset file after the header block. Its size is

retrieved from the file. The size is a 32 bit big endian number stored in the indices 7 to 10

of the main file.

int totalRamSize = 0;
totalRamSize += fileBuffer[7] << 24;
totalRamSize += fileBuffer[8] << 16;
totalRamSize += fileBuffer[9] << 8;
totalRamSize += fileBuffer[10];

Once the size has been obtained then the RAM file can be sent to the validator, this is done

by writing 128 byte blocks to the validator until the whole file has been transmitted. If the

RAM file does not fit equally into 128 byte blocks then the remainder of the file should be

transmitted in a block of the leftover size.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 128

short numRamBlocks = (short)(totalRamSize / 128);
byte[] blockToWrite = new byte[128];
byte checksum = 0;
for (int currentRamBlock = 0; currentRamBlock < numRamBlocks; ++currentRamBlock)
{
 for (int j = 0; j < 128; ++j)
 {
 blockToWrite[j] = (byte)fileBuffer[128 + (currentRamBlock * 128) + j];
 checkSum ^= blockToWrite[j];
 }
 comPort.Write(blockToWrite, 0, 128);

}
byte remainder = (byte)(totalRamSize % 128);
if (remainder != 0)
{
 for (int i = 0; i < remainder; ++i)
 {
 blockToWrite[i] = (byte) fileBuffer[128 + (currentRamBlock * 128) + i];
 checkSum ^= blockToWrite[i];
 }
 comPort.Write(blockToWrite, 0, remainder);
}

An XOR checksum should be kept on each transferred byte, once the whole RAM file has

been transferred the validator will send a response. The first byte of this response will

contain the checksum of the RAM file as calculated by the validator, this should match the

one calculated as the file was transferred. If they do not match then the download process

should be aborted and restarted.

// Wait for response
stopWatch.Restart();
while (!downloadResponse)
{
 // Wait one second then assume timeout
 if (stopWatch.ElapsedMilliseconds > 1000)
 {
 downloading = false;
 return false;
 }
}
downloadResponse = false;

// Check that the checksum matches
if (rxData[0] != checkSum)
 return false;

After the RAM file has been successfully transmitted to the validator, the execution of the

program should halt for 2.5 seconds to allow the validator to run the RAM code.

10.3.5 SENDING THE FIRMWARE/DATASET DATA TO THE VALIDATOR

The main data containing the firmware/dataset can now be transmitted to the validator.

This is done by following these steps:

 Clear the receive buffer on the COM port of any old data.

 Obtain the update code from the firmware/dataset file, this is a single byte located

at index 6.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 129

 Write this update code directly to the validator as a single byte.

// Get update code from byte index 6 of the file
blockToWrite[0] = fileBuffer[6];

// Write the single byte
comPort.Write(blockToWrite, 0, 1);

 The validator will send a response, this response should be an Acknowledgement

byte of 0x32. If this response is not received, abort the download.

// Wait for a response
stopWatch.Restart();
while (!downloadResponse)
{
 // Wait one second then assume timeout
 if (stopWatch.ElapsedMilliseconds > 1000)
 {
 downloading = false;
 return false;
 }
}
downloadResponse = false;

// If no ACK, abort
if (rxData[0] != 0x32)
 return false;

 Send the header block again, directly write the first 128 bytes of the

firmware/dataset file to the validator as a single block.

 Wait for an ACK response of 0x32. If this isn’t received, abort the download.

// Resend header
comPort.Write(fileBuffer, 0, 128);

// Wait for a response
stopWatch.Restart();
while (!downloadResponse)
{
 if (stopWatch.ElapsedMilliseconds > 1000)
 {
 downloading = false;
 return false;
 }
}
downloadResponse = false;

// If no ACK, abort
if (rxData[0] != 0x32)
 return false;

 Obtain the total size of the download, this can be calculated by obtaining the whole

file size from the buffer, then subtracting 128 to cover the header block, then

subtracting the RAM file size as calculated previously. This will leave the total size

of the data to be transferred.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 130

 Divide this total size by the block size obtained with the programming command in

section 3.1.2. This gives the total number of blocks to transfer to the validator.

int totalDownloadSize = fileBuffer.Length - totalRamSize - 128;
short totalDownloadBlocks = (short)(totalDownloadSize / blockSize);

 For each block, break the block size into segments of 128 bytes and write these to

the validator. Keep an XOR checksum on each byte written.

 At the end of a complete block, send the calculated checksum to the validator as a

single byte.

 The validator will send a response where the first byte contains the checksum as

calculated by the validator. If this checksum matches the one calculated as the

blocks are sent then this block was a success and the next can be sent in the same

way.
// For each block in the total to transfer
for (currentDownloadBlock = 0; currentDownloadBlock < totalDownloadBlocks; ++currentDownloadBlock)
{
 // Reset checksum for each block
 checkSum = 0;

 // Copy the bytes from each block into an array to send, only send 128 bytes at a time
 int breakdown = blockSize / 128;
 for (int i = 0; i < breakdown; ++i)
 {
 for (int j = 0; j < 128; ++j)
 {
 // Skip the header (128 bytes) + the RAM file +
 // the already written blocks + the broken down data sent so far
 blockToWrite[j] = (byte)fileData[128 + totalRamSize +
 (currentDownloadBlock * blockSize) + j + (i*128)];

 checkSum ^= blockToWrite[j]; // Keep track of checksum for this block
 }

 // Write this 128 byte block to the validator
 comPort.Write(blockToWrite, 0, 128);
 }

 // Write the checksum to the validator
 blockToWrite[0] = checkSum;
 comPort.Write(blockToWrite, 0, 1);

 // Wait for a response
 stopWatch.Restart();
 while (!downloadResponse)
 {
 if (stopWatch.ElapsedMilliseconds > 1000)
 {
 downloading = false;
 return false;
 }
 }
 downloadResponse = false;

 // Response received, does checksum match?
 if (rxData[0] != checkSum)
 {
 downloading = false;
 return false;
 }

// This block transferred successfully and we can write the next
}

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 131

 In the same way as the RAM file, if the block size does not exactly fit into the total

size then the remainder should be sent in divisions of 128 bytes or less until all

bytes have been transferred.

 Once all bytes have been transferred the validator will reset.

10.3.6 CHECKING THE SUCCESS OF THE TRANSFER

From here the mode of sending data should be restored to the SSP packet format.

The COM port should be closed, the baud rate set back to 9600 and then re-opened.

An SSP Poll command should be sent to the validator repeatedly until it responds with an

OK (0xF0) response.

// Reset baud to 9600
comPort.Close();
comPort.BaudRate = 9600;
comPort.Open();

// Send sync to determine if validator back online
bool online = false;
stopWatch.Restart();
do
{
 cmd.CommandData[0] = 0x11;
 cmd.CommandDataLength = 0x01;
 online = SSPSendCommand(cmd, info);
 if (stopWatch.ElapsedMilliseconds > 10000)
 {
 return false;
 }
} while (!online);

return true;

At this point the firmware/dataset has been successfully transferred and the validator is

ready for use.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 132

11 LIBRARY REFERENCE

This section describes the libraries provided by Innovative Technology LTD. to assist

developers to implement eSSP.

Two ITL libraries are currently supported in the form of Microsoft Windows DLLs.

 ITLLib.dll is provided for /Net platform development (C# and VB.Net).

 ITLSSPProc.dll is provided for C++ and VB6 development.

11.1 ITLLIB.DLL

The ITLLib.dll is a dynamic link library designed to be used with Windows .NET applications

to help with the design of software used to communicate in either SSP or eSSP with an ITL

validator.

The library contains useful functions to simplify packet construction, encryption, and writing

bytes to and retrieving bytes from a com port.

This section provides a guide to what is contained inside this library and how it can help a

user to implement SSP or eSSP communication.

11.1.1 LIBRARY STRUCTURE

The ITLLib.dll contains a number of public classes available for instantiation. All except one

of these public classes are simply collections of variables used by the library and

instantiated and filled with data by the developer.

These classes consist of:

public class SSP_KEYS
 {
 public UInt64 Generator;
 public UInt64 Modulus;
 public UInt64 HostInter;
 public UInt64 HostRandom;
 public UInt64 SlaveInterKey;
 public UInt64 SlaveRandom;
 public UInt64 KeyHost;
 public UInt64 KeySlave;
 };

public class SSP_FULL_KEY
 {
 public UInt64 FixedKey;
 public UInt64 VariableKey;
 };

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 133

public class SSP_COMMAND
 {
 public SSP_FULL_KEY Key = new SSP_FULL_KEY();
 public Int32 BaudRate = 9600;
 public UInt32 Timeout = 500;
 public string ComPort;
 public byte SSPAddress = 0;
 public byte RetryLevel = 3;
 public bool EncryptionStatus = false;
 public byte CommandDataLength;
 public byte[] CommandData = new byte[255];
 public PORT_STATUS ResponseStatus = new PORT_STATUS();
 public byte ResponseDataLength;
 public byte[] ResponseData = new byte[255];
 public UInt32 encPktCount;
 public byte sspSeq;
 };

public class SSP_COMMAND_INFO
 {
 public bool Encrypted;
 public SSP_PACKET Transmit = new SSP_PACKET();
 public SSP_PACKET Receive = new SSP_PACKET();
 public SSP_PACKET PreEncryptedTransmit = new SSP_PACKET();
 public SSP_PACKET PreEncryptedRecieve = new SSP_PACKET();
 };

The other public class available in this library contains methods that can be used by the

developer, it is named SSPComms and is covered in detail in the following section.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 134

11.1.2 SSPCOMMS PUBLIC METHODS

OPENSSPCOMPORT (SSP_COMMAND)

This method uses the Windows class System.IO.Ports.SerialPort to open a com port. The

port that is opened along with the baud rate is determined from an instance of the

SSP_COMMAND class that is passed as the only parameter. This function also adds an

event handler to the port for received data. The function returns a boolean value, true

indicates the port is open, false indicates that the port was not opened.

Example

SSP_COMMAND sspc = new SSP_COMMAND();
sspc.ComPort = "COM12";
sspc.BaudRate = 9600;
if (sspLib.OpenSSPComPort(sspc))
{
 // Port opened successfully
}

CLOSECOMPORT ()

This method simply closes the com port the developer opened with the OpenSSPComPort

method. It takes no parameters and returns a boolean value, true indicates the port was

closed, false indicates an exception was throw when trying to close the port.

Example

if (sspLib.CloseComPort())
{
 // Port was closed
}

SSPSENDCOMMAND (SSP_COMMAND, SSP_COMMAND_INFO)

This method involves a number of steps in order to receive a packet’s data, compile the

packet, optionally encrypt it and then transmit it to the validator. The method requires an

SSP_COMMAND instance to be passed as a parameter. As long as the correct data has

been entered into the SSP_COMMAND instance then this method will transmit a complete

packet to the validator.

If the SSP_COMMAND variable EncryptionStatus is set to true, a key must have been

negotiated with the validator before a packet can be encrypted and sent.

The SSP_COMMAND_INFO instance which is passed as the other parameter to this method

is for the use of the developer, it will be filled with information about the transmitted and

received packets.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 135

This method will return true under the following conditions:

 A packet has been sent successfully to the validator and a response received.

 An encrypted packet has been sent successfully to the validator and an

encrypted response received.

This method will return false under the following conditions:

 There was a problem with the compilation of a packet, either encrypted or not.

 There was a problem writing to the port.

 A response was not received from the validator within the timeout period.

 There was a problem with the checksum calculation.

 The count of the slave and the host are mismatched.

In addition to returning false, further information can be obtained about the specific reason

for the failure to send a packet. The library will set a variable inside the SSP_COMMAND

instance named ResponseStatus. This variable is of the following enumeration:

public enum PORT_STATUS
{
 PORT_CLOSED,
 PORT_OPEN,
 PORT_ERROR,
 SSP_REPLY_OK,
 SSP_PACKET_ERROR,
 SSP_CMD_TIMEOUT,
};

Example

sspc.CommandData[0] = 0x11;
sspc.CommandDataLength = 1;
if (sspLib.SSPSendCommand(sspc, sspi))
{
 // Command was sent successfully
}

INITIATESSPHOSTKEYS (SSP_KEYS, SSP_COMMAND)

This method is involved with the encryption process used in eSSP. It sets up an instance of

the SSP_KEYS structure to begin the encryption process, this involves generating the

random 64 bit prime numbers required and creating the host intermediate key to send to

the slave.

Example

SSP_KEYS sspk = new SSP_KEYS();
sspLib.InitiateSSPHostKeys(sspk, sspc);

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 136

CREATESSPHOSTENCRYPTIONKEY (SSP_KEYS)

This method is the final public method that needs to be used in the library. It takes a

SSP_KEYS instance as a parameter and uses the information contained within to generate

the final encryption key. This key can then be set in the SSP_COMMAND instance, this

allows the SSPSendCommand method to encrypt packets and send them if the variable

EncryptionStatus in the SSP_COMMAND instance is set to true.

Example

sspLib.CreateSSPHostEncryptionKey(sspk);
sspc.Key.FixedKey = 0x12345671234567;
sspc.Key.VariableKey = sspk.KeyHost;

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 137

11.2 ITLSSPPROC.DLL

This section describes the interface to the ITLSSPProc eSSP DLL.

This DLL has been developed to assist in the implementation of SSP and the encryption

required for eSSP in Windows based system. It provides a mechanism to format and send

packets to an SSP target across a serial link from a Windows host. It also provides the

routines required for setting keys and encrypting packets.

11.2.1 LIBRARY STRUCTURE

The DLL interface requires defined structures:

C STRUCTURE DEFINITIONS.

This structure is used by the host to store the full encryption key The FixedKey bytes are

defined by the host and must match the slave fixed key.

typedef struct{
 unsigned __int64 FixedKey; // 8 byte number for fixed host key
 unsigned __int64 EncryptKey; // 8 Byte number for variable key
}SSP_FULL_KEY;

This structure is required for the key exchange process.

typedef struct{
unsigned __int64 Generator;
 unsigned __int64 Modulus;
unsigned __int64 HostInter;
 unsigned __int64 HostRandom;
unsigned __int64 SlaveInterKey;
 unsigned __int64 SlaveRandom;
unsigned __int64 KeyHost;
 unsigned __int64 KeySlave;
}SSP_KEYS;

Port status code enumeration for ResponseStatus element.

typedef enum{
 PORT_CLOSED,
 PORT_OPEN,
 PORT_ERROR,
 SSP_REPLY_OK,
 SSP_PACKET_ERROR,
 SSP_CMD_TIMEOUT,
}PORT_STATUS;

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 138

Structure to define an SSP command.

typedef struct{
 SSP_FULL_KEY Key; // the full key
 unsigned long BaudRate; // baud rate of the packet
 unsigned long Timeout; // how long in ms to wait for reply from slave
 unsigned char PortNumber; // the serial com port number of the host
 unsigned char SSPAddress; // the SSP address of the slave
 unsigned char RetryLevel; // how many retries to slave for non-response
 unsigned char EncryptionStatus; // encrypted command 0 – No, 1 - Yes
 unsigned char CommandDataLength; // Number of bytes in the command
 unsigned char CommandData[255]; // Array containing the command bytes
 unsigned char ResponseStatus; // Response Status (PORT_STATUS enum)
 unsigned char ResponseDataLength; // how many bytes in the response
 unsigned char ResponseData[255]; // an array of response data
 unsigned char IgnoreError; // suppress error box (0 – display,1- suppress)
}SSP_COMMAND;

Structure to define an SSP Packet.

typedef struct{
 unsigned short packetTime; // the time in ms taken for reply response
 unsigned char PacketLength; // The length of SSP packet
 unsigned char PacketData[255]; // packet data array
}SSP_PACKET;

Structure to define SSP packet info for log file and display purposes.

typedef struct{
 unsigned char* CommandName;
 unsigned char* LogFileName;
 unsigned char Encrypted;
 SSP_PACKET Transmit;
 SSP_PACKET Receive;
 SSP_PACKET PreEncryptedTransmit;
 SSP_PACKET PreEncryptedRecieve;
}SSP_COMMAND_INFO;

Structure to hold information about communications ports used on the host when more

than one is being used.

typedef struct{
 unsigned char NumberOfPorts;
 unsigned char PortID[MAX_PORT_ID];
 unsigned long BaudRate[MAX_PORT_ID];
}PORT_CONFIG;

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 139

VISUAL BASIC STRUCTURE DEFINITIONS.

Public Type EightByteNumber
 LoValue As Long
 Hivalue As Long
End Type

Public Type SSP_FULL_KEY
 FixedKeyLowValue As Long
 FixedKeyHighValue As Long
 EncryptKeyLowValue As Long
 EncryptkeyHighValue As Long
End Type

Public Type SSP_KEYS
 Generator As EightByteNumber
 Modulus As EightByteNumber
 HostInter As EightByteNumber
 HostRandom As EightByteNumber
 SlaveInterKey As EightByteNumber
 SlaveRandom As EightByteNumber
 KeyHost As EightByteNumber
 KeySlave As EightByteNumber
End Type

Public Enum PORT_STATUS
 PORT_CLOSED
 port_open
 PORT_ERROR
 ssp_reply_ok
 SSP_PACKET_ERROR
 SSP_CMD_TIMEOUT
End Enum

Public Type SSP_COMMAND
 Key As SSP_FULL_KEY
 BaudRate As Long
 Timeout As Long
 PortNumber As Byte
 sspAddress As Byte
 RetryLevel As Byte
 EncryptionStatus As Byte
 CommandDataLength As Byte
 CommandData(254) As Byte
 ResponseStatus As Byte
 ResponseDataLength As Byte
 ResponseData(254) As Byte
End Type

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 140

Public Type SSP_PACKET
 PacketTime As Integer
 PacketLength As Byte
 PacketData(254) As Byte
End Type

Public Type SSP_COMMAND_INFO
 CommandName As String
 LogFileName As String
 Encrypted As Byte
 Transmit As SSP_PACKET
 Recieve As SSP_PACKET
 PreEncryptTransmit As SSP_PACKET
 PreEncryptRecieve As SSP_PACKET
End Type

Public Type PORT_CONFIG
 NumberOfPorts As Byte
 PortID(MAX_PORT_ID) As Byte
 BaudRate(MAX_PORT_ID) as Long
End Type

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 141

11.2.2 API DECLARATIONS

VISUAL BASIC™ 6

Public Declare Function OpenSSPComPort Lib "ITLSSPProc.dll" _
 (ByRef sspc As SSP_COMMAND) As Integer
Public Declare Function CloseSSPComPort Lib "ITLSSPProc.dll" () As Integer
Public Declare Function OpenSSPComPort2 Lib "ITLSSPProc.dll" _
 (ByRef sspc As SSP_COMMAND) As Integer
Public Declare Function CloseSSPComPort2 Lib "ITLSSPProc.dll" () As Integer
Public Declare Function OpenSSPComPortUSB Lib "ITLSSPProc.dll" _
 (ByRef sspc As SSP_COMMAND) As Integer
Public Declare Function CloseSSPComPortUSB Lib "ITLSSPProc.dll" () As Integer
Public Declare Function OpenSSPMulipleComPorts Lib “ITLSSPProc.dll” _
 (ByRef pt As PORT_CONFIG) As Integer
Public Declare Function CloseSSPMultiplePorts Lib “ITLSSPProc.dll” () As Integer
Public Declare Function InitiateSSPHostKeys Lib "ITLSSPProc.dll" _
 (ByRef Key As SSP_KEYS, ByRef sspc As SSP_COMMAND) As Integer
Public Declare Function CreateSSPHostEncryptionKey Lib "ITLSSPProc.dll" _
 (ByRef Key As SSP_KEYS) As Integer
Public Declare Function SSPSendCommand Lib "ITLSSPProc.dll" _
 (ByRef sspc As SSP_COMMAND, ByRef sspinfo As SSP_COMMAND_INFO) As Integer

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 142

11.2.3 FUNCTION DECLARATIONS.

OPENSSPCOMPORT

Parameters:

Pointer to SSP_COMMAND structure

Returns:

WORD 0 for fail, 1 for success

Description:

Opens a serial communication port for SSP data transmission and reception on the

host.

Requirements before calling:

SSP_COMMAND structure elements BaudRate and PortNumber need to be

correctly filled.

Result after calling:

If function returns 1, host serial port PortNumber is now open for serial comms.

OPENSSPCOMPORT2

Parameters:

Pointer to SSP_COMMAND structure

Returns:

WORD 0 for fail, 1 for success

Description:

Opens a serial communication port for SSP data transmission and reception on the

host. This opens an additional com port to the port in OpenSSPComPort so that

two devices with different serial ports may be used from the same host.

Requirements before calling:

SSP_COMMAND structure elements BaudRate and PortNumber need to be

correctly filled. One of the SSP devices used when two ports are open must have an

SSP address of 0. (SMART payout or BNV).

Result after calling:

If function returns 1, host serial port PortNumber is now open for serial comms.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 143

OPENSSPCOMPORTUSB

Parameters:

Pointer to SSP_COMMAND structure

Returns:

WORD 0 for fail, 1 for success

Description:

Opens a serial communication port for SSP data transmission and reception on the

host. This function is used when the host has two or more SSP devices (with

different SSP address) connected to the same SSP bus.

Requirements before calling:

SSP_COMMAND structure elements BaudRate and PortNumber need to be

correctly filled.

Result after calling:

If function returns 1, host serial port PortNumber is now open for serial comms.

OPENSSPMULIPLECOMPORTS

Parameters:

Pointer to PORT_CONFIG structure.

Returns:

WORD 0 for fail, 1 for success.

Description:

Opens multiple serial communication ports for SSP data transmission and

reception on the host. The details of which ports to open are contained within the

PORT_CONFIG structure passed as a parameter to this function. This function is

used when multiple devices are connected to different ports on the host machine.

Requirements before calling:

PORT_CONFIG structure elements NumberOfPorts, PortID and BaudRate need to

be correctly filled.

Result after calling:

If function returns 1, multiple host serial ports specified in the PORT_CONFIG

structure are now open.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 144

CLOSESSPCOMPORT

Parameters:

None

Returns:

WORD 0 for fail, 1 for success

Description:

Closes the serial communication port on the host corresponding to the

OpenSSPComPort function

Requirements before calling:

An open communication port with PortNumber opened in OpenSSPComPort. Note

that calling this function if the port is already closed will have no effect and will still

return 1.

Result after calling:

If function returns 1, host serial port PortNumber is now closed for serial comms.

CLOSESSPCOMPORT2

Parameters:

None

Returns:

WORD 0 for fail, 1 for success

Description:

Closes the serial communication port on the host corresponding to the

OpenSSPComPort2 function

Requirements before calling:

An open communication port with PortNumber opened in OpenSSPComPort2. Note

that calling this function if the port is already closed will have no effect and will still

return 1.

Result after calling:

If function returns 1, host serial port PortNumber is now closed for serial comms.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 145

CLOSESSPCOMPORTUSB

Parameters:

None

Returns:

WORD 0 for fail, 1 for success

Description:

Closes the serial communication port on the host corresponding to the

OpenSSPComPortUSB function

Requirements before calling:

An open communication port with PortNumber opened in OpenSSPComPortUSB.

Note that calling this function if the port is already closed will have no effect and

will still return 1.

Result after calling:

 If function returns 1, host serial port PortNumber is now closed for serial comms.

CLOSESSPMULTIPLEPORTS

Parameters:

None

Returns:

WORD 0 for fail, 1 for success

Description:

Closes all the serial ports on the host that were opened with the

OpenSSPMulipleComPorts function.

Requirements before calling:

Previously opened communications ports that were initially opened using the

OpenSSPMulipleComPorts function.

Result after calling:

If function returns 1 then all the ports opened with OpenSSPMulipleComPorts are

now closed.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 146

INITIATESSPHOSTKEYS

Parameters:

Pointer to the start of SSP_KEY structure,

Pointer to SSP_COMMAND structure

Returns:

WORD 0 for fail, 1 for success

Description:

Function to create encryption Modulus, Generator and Host Inter numbers. These

numbers are sent to the slave during the key exchange process.

Requirements before calling:

SSP_COMMAND structure element PortNumber needs to be correctly filled with the

host serial port number.

Result after calling:

SSP encryption packet counter is reset to 0 for that host port number.

SSP_KEY structure will be filled with number values in array order:

Generator valid

Modulus valid

HostInter valid

HostRandom empty

SlaveInterKey empty

SlaveRandom empty

KeyHost empty

KeySlave empty

CREATESSPHOSTENCRYPTIONKEY

Parameters:

Pointer to the start of SSP_KEY structure,

Returns:

 WORD 0 for fail, 1 for success

Description:

Call this function to create your host key using the SSP_KEY structure populated

first by the InitiateSSPHostKeys function. This host key will then match the slave

key.

Requirements before calling:

An SSP_KEY structure populated by call InitiateSSPHostKeys, then sending the

Generator and Modulus numbers to the slave (via SSP packets) to populate the

SlaveInterKey element of this structure.

Result after calling:

The KeyHost element of the SSP_KEYS structure contains the 64 bit encryption key

to combine with the 64 bit fixed key of the host to create the full 128-bit eSSP

encryption key for this system.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 147

SSPSENDCOMMAND

Parameters:

Pointer to SSP_COMMAND structure.

Pointer to SSP_COMMAND_INFO structure.

Returns:

WORD 0 for fail, 1 for success

Description:

Compiles a full ssp packet given a command array, with optional SSP encryption

and sends to the slave. The host then waits for a reply, checks its validity and

decrypts if required. The function will retry for the number of times specified in

RetryLevel parameter after waiting Timeout milliseconds for a response from the

slave.

Requirements before calling:

An open communication port with PortNumber opened in one of the

OpenSSPComPort functions.

Result after calling:

The function returns 1 for a successful transaction – the SSP_COMMAND structure

elements ResponseData and ResponseDataLength contains the slave reply data

and the ResponseStatus element will be set to SSP_REPLY_OK.

If the function returns 0, the SSP_COMMAND structure elements ResponseData

and ResponseDataLength will contain invalid data and the ResponseStatus

element will contain the reason for failure as one of the PORT_STATUS

enumeration elements.

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 148

12 APPENDIX

A – LAST REJECT CODES

Code (Hex) Reject Reason

0x00 Note accepted

0x01 Note length incorrect

0x02 Invalid note

0x03 Invalid note

0x04 Invalid note

0x05 Invalid note

0x06 Channel inhibited

0x07 Second note inserted

0x08 Host rejected note

0x09 Invalid note

0x0A Invalid note read

0x0B Note too long

0x0C Validator disabled

0x0D Mechanism slow/stalled

0x0E Strimming attempt

0x0F Fraud channel reject

0x10 No notes inserted

0x11 Peak detect fail

0x12 Twisted note detected

0x13 Escrow time-out

0x14 Bar code scan fail

0x15 Invalid note read

0x16 Invalid note read

Ox17 Invalid note read

0x18 Invalid note read

0x19 Incorrect note width

0x1A Note too short

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 149

B – LANGUAGE GUIDES

B.1 – SENDING A COMMAND

C#

commandStructure.CommandData[0] = 0x11;
commandStructure.CommandDataLength = 0x01;
sspLibrary.SSPSendCommand(commandStructure, infoStructure);

C++ Windows

CommandStructure->CommandData[0] = (char)0x11;
CommandStructure->CommandDataLength = (char)0x01;
sspLibrary->SSPSendCommand(commandStructure, infoStructure);

Visual Basic

commandStructure.CommandDataLength = 1
commandStructure.CommandData(0) = &H11
sspLibrary.SSPSendCommand(commandStructure, commandInfo)

B.2 – RECEIVING A RESPONSE

C#

if (commandStructure.ResponseData[0] == 0xF0)
{
// Unit successfully received command and is acting on it
} else {
// There was a problem with sending the command, or carrying out the
// command
}

C++ Windows

if (commandStructure->ResponseData[0] == (char)0xF0)
{
// Unit successfully received command and is acting on it
} else {
// There was a problem with sending the command, or carrying out the
// command
}

Visual Basic

If (commandStructure.ResponseData(0) = &HF0) Then
‘ Unit successfully received command and is acting on it
Else
 ‘ There was a problem with sending the command, or carrying out the
 ‘ command
End If

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 150

C – KEY NEGOTIATION

C++ Example
// assuming that the com port is open and the command structure has been initialised

// make sure encryption is off
commandStructure->EncryptionStatus = false;

// send sync
commandStructure->CommandData[0] = 0x11;
commandStructure->CommandDataLength = 0x01;
SSPSendCommand(commandStructure, infoStructure);

// generate the random prime numbers for the Generator and Modulus
InitiateSSPHostKeys(keys, commandStructure);

// send generator
commandStructure->CommandData[0] = 0x4A;
commandStructure->CommandDataLength = 9;
for (int i = 0; i < 8; i++)
{
 commandStructure->CommandData[i + 1] = (char)(keys->Generator >> (8 * i));
}
SSPSendCommand(commandStructure, infoStructure);

// send modulus
commandStructure ->CommandData[0] = 0x4B;
commandStructure ->CommandDataLength = 9;
for (int i = 0; i < 8; i++)
{
 commandStructure->CommandData[i + 1] = (char)(keys->Modulus >> (8 * i));
}
SSPSendCommand(commandStructure, infoStructure);

// send key exchange
commandStructure ->CommandData[0] = 0x4C;
commandStructure ->CommandDataLength = 9;
for (int i = 0; i < 8; i++)
{
 commandStructure->CommandData[i + 1] = (char)(keys->HostInter >> (8 * i));
}
SSPSendCommand(commandStructure, infoStructure);

keys->SlaveInterKey = 0;
for (int i = 0; i < 8; i++)
{
 keys->SlaveInterKey += (ULONG) commandStructure->ResponseData[1 + i] << (8 * i);
}

// generate key
CreateSSPHostEncryptionKey(keys);

// set full encryption key in command structure
commandStructure->Key.FixedKey = 0x0123456701234567;
commandStructure->Key.EncryptKey = keys->KeyHost;

cmd->EncryptionStatus = true; // turn on encrypting from this point

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 151

C# Example
// assuming that the com port is open and the command structure has been initialised

// send sync
commandStructure.CommandData[0] = 0x11;
commandStructure.CommandDataLength = 0x01;
SSPSendCommand(commandStructure, infoStructure);

// generate the random prime numbers for the Generator and Modulus
eSSP.InitiateSSPHostKeys(keys, commandStructure);

// send generator
commandStructure.CommandData[0] = 0x4A;
commandStructure.CommandDataLength = 9;
for (byte i = 0; i < 8; i++)
{
 commandStructure.CommandData[i + 1] = (byte)(keys.Generator >> (8 * i));
}
SSPSendCommand(commandStructure, infoStructure);

// send modulus
commandStructure.CommandData[0] = 0x4B;
commandStructure.CommandDataLength = 9;
for (byte i = 0; i < 8; i++)
{
 commandStructure.CommandData[i + 1] = (byte)(keys.Modulus >> (8 * i));
}
SSPSendCommand(commandStructure, infoStructure);

// send key exchange
commandStructure.CommandData[0] = 0x4C;
commandStructure.CommandDataLength = 9;
for (byte i = 0; i < 8; i++)
{
 commandStructure.CommandData[i + 1] = (byte)(keys.HostInter >> (8 * i));
}
SSPSendCommand(commandStructure, infoStructure);

keys.SlaveInterKey = 0;
for (byte i = 0; i < 8; i++)
{
 keys.SlaveInterKey += (UInt64)commandStructure.ResponseData[1 + i] << (8 * i);
}

// generate key
eSSP.CreateSSPHostEncryptionKey(keys);

// set full encryption key in command structure
cmd.Key.FixedKey = 0x0123456701234567;
cmd.Key.VariableKey = keys.KeyHost;

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 152

Visual Basic Example
‘ assuming that the com port is open and the command structure has been initialised
Public Function NegotiateKeyExchange(sspc As SSP_COMMAND, _

 sspInfo As SSP_COMMAND_INFO) As Boolean

Dim sspKey As SSP_KEYS

Dim i As Integer

' DLL call to create Modulus, Generator and Host inter numbers
If InitiateSSPHostKeys(sspKey, sspc) = 0 Then

 MsgBox "Error initiating host key modulus or generator values set to zero", _

 vbExclamation, App.ProductName

 Exit Function

End If

sspc.CommandDataLength = 1

sspc.EncryptionStatus = 0

sspc.CommandData(0) = SYNC_CMD

If Not TransmitSSPCommand(sspc, sspInfo) Then Exit Function

sspc.CommandDataLength = 9

sspc.CommandData(0) = cmd_SSP_SET_GENERATOR

For i = 0 To 3

 sspc.CommandData(1 + i) =

 CByte(RShift(sspKey.Generator.LoValue, 8 * i) And &HFF)

 sspc.CommandData(5 + i) =

 CByte(RShift(sspKey.Generator.Hivalue, 8 * i) And &HFF)

Next I

If Not TransmitSSPCommand(sspc, sspInfo) Then Exit Function

sspc.CommandDataLength = 9

sspc.CommandData(0) = cmd_SSP_SET_MODULUS

For i = 0 To 3

 sspc.CommandData(1 + i) =

 CByte(RShift(sspKey.Modulus.LoValue, 8 * i) And &HFF)

 sspc.CommandData(5 + i) =

 CByte(RShift(sspKey.Modulus.Hivalue, 8 * i) And &HFF)

Next i

If Not TransmitSSPCommand(sspc, sspInfo) Then Exit Function

sspc.CommandDataLength = 9

sspc.CommandData(0) = cmd_SSP_REQ_KEY_EXCHANGE

For i = 0 To 3

 sspc.CommandData(1 + i) =

 CByte(RShift(sspKey.HostInter.LoValue, 8 * i) And &HFF)

 sspc.CommandData(5 + i) =

 CByte(RShift(sspKey.HostInter.Hivalue, 8 * i) And &HFF)

Next i

If Not TransmitSSPCommand(sspc, sspInfo) Then Exit Function

sspKey.SlaveInterKey.LoValue = 0

sspKey.SlaveInterKey.Hivalue = 0

For i = 0 To 3

 sspKey.SlaveInterKey.LoValue = sspKey.SlaveInterKey.LoValue + _

 (CLng(sspc.ResponseData(1 + i)) * (256 ^ i))

 sspKey.SlaveInterKey.Hivalue = sspKey.SlaveInterKey.Hivalue + _

 (CLng(sspc.ResponseData(5 + i)) * (256 ^ i))

Next i

' we can now calculate our host key using the DLL method
If CreateSSPHostEncryptionKey(sspKey) = 0 Then

 MsgBox "Error creating host key", vbExclamation, App.ProductName

 Exit Function

End If

sspc.Key.EncryptKeyLowValue = sspKey.KeyHost.LoValue

sspc.Key.EncryptkeyHighValue = sspKey.KeyHost.Hivalue

NegotiateKeyExchange = True

End Function

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 153

D – POLL WITH ACK

The poll with ACK command is used in order to avoid missing critical poll events. It works in

a very similar way to the poll command except certain specified events will need to be

acknowledged before the unit will move on and execute any further note actions. These

events will continue to poll until they are acknowledged. Below is a psuedocode example of

polling with ACK.

 While polling with ACK.

 If a command requiring acknowledgement is received i.e. Dispensed.

 Perform relevant operations for that command i.e. decrement totals.

 Send event ACK command (0x57) to allow the unit to continue.

 If a command not requiring acknowledgement is received then continue as

normal.

E – FIRMWARE VERSIONS AND PROTOCOL LEVEL SUPPORT

NV9USB

Protocol Version Firmware Version

6 3.27

7 3.33

8 -

NV11

Protocol Version Firmware Version

6 3.27

7 3.33

8 -

NV200

Protocol Version Firmware Version

6 4.07

7 4.08

8 4.09

SMART Payout

Protocol Version Firmware Version

6 4.07

7 4.08

8 4.09

SMART Hopper

Protocol Version Firmware Version

6 6.03

7 6.09

8 -

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 154

The following tables detail the minimum protocol version for which the associated poll

responses will be returned. If the device is set to a protocol level lower than the number

detailed below, these responses will not be returned.

This mechanism allows a developer to implement software to control a device to a specific

protocol version. The firmware can be updated but no unknown events will be reported

back from the poll command until the protocol level is raised.

BANK NOTE VALIDATOR

Event/ State Protocol Version

Slave Reset <4

Read Note <4

Credit Note <4

Rejecting <4

Rejected <4

Stacking <4

Stacked <4

Safe Jam <4

Unsafe Jam <4

Disabled <4

Fraud Attempt <4

Stacker Full <4

Note cleared from front at reset 4

Note cleared into cash box at reset 4

Cash Box Removed 4

Cash Box Replaced 4

Bar Code Ticket Validated 4

Bar Code Ticket Acknowledge 4

Note path open 6

Channel Disable 7

Initialising (Poll w. ACK response only) 7

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 155

SMART PAYOUT

Event/ State Protocol Version

Dispensing 4

Dispensed 4

Jammed 4

Halted 4

Floating 4

Floated 4

Time Out 4

Incomplete Payout 4

Incomplete Float 4

Emptying 4

Emptied 4

Payout out of service 6

Note stored in payout 4

Jam Recovery 7

Error During Payout 7

SMART Emptying 4

SMART Emptied 4

Channel Disable 7

Note Transferred to Stacker 8

Note held in bezel 8

Note paid into store at power up 8

Note paid into stacker at power-up 8

NV11

Event/ State Protocol Version

Dispensing 4

Dispensed 4

Jammed 4

Halted 4

Incomplete Payout 4

Emptying 4

Empty 4

Note stored in payout 4

Note Transferred to Stacker 8

Payout out of service 4

Note paid into stacker at power-up 8

Note paid into store at power up 8

Note dispensed at power up 8

Note Float Removed 4

Note Float Attached 4

Note in Bezel Hold 8

Device Full 4

Channel Disable 7

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 156

SMART HOPPER

Event/ State Protocol Version

OK 5

Slave reset 5

Unit disabled 5

Dispensing 5

Dispensed 5

Lid Open 6

Lid Closed 6

Calibration Fail 6

Jammed 5

Halted 5

Floating 5

Floated 5

Time Out 5

Incomplete Payout 5

Incomplete Float 5

Emptying 5

Empty 5

Cash Box Paid 5

Coin Credit 5

Coin mech jammed 5

Coin mech return button pressed 5

Fraud Attempt 5

Low Payout Level 5

SMART Empting 5

SMART Emptied 5

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 157

F – SHARING RESOURCES

This section describes firstly the issues with threaded communication and then the best

practice. It is intended as a guide.

If the program is setup as shown below, there is a global pointer to the instance of the DLL

that both threads use for communication.

There is only one channel (port) the data can go through to the SMART Hopper and the

validator. If SSPSendCommand method is used by both threads without the first call

completing and a response being sent back, it will not work.

Time THREAD 1 THREAD 2

 Poll 

  Ok

 Set Routing 

  Ok

 Poll 

 Set Routing 

Main

Thread 1 (POLL)

Thread 2 (POLL)

DLL

Instance

COM 1

SMART

Hopper

Validator

Copyright Innovative Technology Ltd 2013 GA973

SSP Implementation Guide 158

To get around this, one suggestion has been as follows:

This is not possible as there is an internal flag in the DLL that requires that instance of the

DLL to open the port before commands can be sent. This would mean both instances would

have to open the port and this is not possible. There is not currently a way to pass/get the

open port handle in the DLL instance.

Solution

The suggest way to resolve this is to have the two threads running each with a

SendCommand method that checks a global boolean variable called something like LOCK.

When a command is being processed, locked is set to true and the SendCommand method

waits, polling the LOCKED variable until it is false (a timeout is suggested too to ensue if

something goes wrong, the program is not halted).

Time LOCK THREAD 1 THREAD 2

 1 Poll 

 1

 1  Ok

 0

 1 Set Routing 

 1

 1  Ok

 0

 1 Poll 

 1

 1 Set Routing Hold

 1  Ok Set Routing Hold

 1 Set Routing 

Main

Thread 1 (POLL)

Thread 2 (POLL)

DLL

Instance

1

COM 1

SMART

Hopper

Validator

DLL

Instance

2

Copyright Innovative Technology Ltd2012 GA973

SSP Implementation Guide

159

REVISION HISTORY

The commands and responses detailed in this document are based on the following

protocol levels and document versions:

Document/Model Version Protocol

Version

Released

GA138 31 -

NV9USB 3.39 7 2012-03-20

NV10USB 3.30 7 2011-11-03

BV20 4.07 7 2011-02-25

BV50 4.07 7 2011-10-03

BV100 4.06 6 2010-07-15

NV11 3.39 7 2012-03-20

NV200 4.14 7 2012-01-27

SMART Payout 4.14 8 2012-01-27

SMART Hopper 6.14 8 2012-03-13

INNNOVATIVE TECHNOLOGY LTD

TITLE SSP Implementation Guide

DRAWING NO AUTHOR DATE FORMAT

GA973 SR 2012/05/10 MS Word 2000

ISSUE RELEASE DATE MODIFIED BY COMMENTS

A 2012/03/03 SR Draft Issue A

B 2012/04/23 SR Draft Issue B

1 2012/05/03 SR Release 1

2 2012/05/10 SR Add chapter 10 –

downloading f/w

2.1 2012/05/14 SR Fix layering issue in

initial v2 release

(P124) and update

example code on

P130.

2.2 2013/08/08 AB

