#![no_main] #![no_std] extern crate cortex_m; extern crate cortex_m_rt; extern crate panic_halt; extern crate stm32f042_hal as hal; use hal::prelude::*; use hal::spi::Spi; use hal::spi::{Mode, Phase, Polarity}; use hal::stm32; use cortex_m_rt::entry; #[entry] fn main() -> ! { pub const MODE: Mode = Mode { polarity: Polarity::IdleHigh, phase: Phase::CaptureOnSecondTransition, }; if let Some(p) = stm32::Peripherals::take() { let mut rcc = p.RCC.constrain(); let clocks = rcc.cfgr.freeze(); let mut gpioa = p.GPIOA.split(); // Configure pins for SPI let sck = gpioa.pa5.into_alternate_af0(); let miso = gpioa.pa6.into_alternate_af0(); let mosi = gpioa.pa7.into_alternate_af0(); // Configure SPI with 100kHz rate let mut spi = Spi::spi1(p.SPI1, (sck, miso, mosi), MODE, 100_000.hz(), clocks); // Cycle through colors on 16 chained APA102C LEDs loop { for r in 0..255 { let _ = spi.write(&[0, 0, 0, 0]); for _i in 0..16 { let _ = spi.write(&[0b1110_0001, 0, 0, r]); } let _ = spi.write(&[0xFF, 0xFF, 0xFF, 0xFF]); } for b in 0..255 { let _ = spi.write(&[0, 0, 0, 0]); for _i in 0..16 { let _ = spi.write(&[0b1110_0001, b, 0, 0]); } let _ = spi.write(&[0xFF, 0xFF, 0xFF, 0xFF]); } for g in 0..255 { let _ = spi.write(&[0, 0, 0, 0]); for _i in 0..16 { let _ = spi.write(&[0b1110_0001, 0, g, 0]); } let _ = spi.write(&[0xFF, 0xFF, 0xFF, 0xFF]); } } } loop { continue; } }