#![no_main] #![no_std] use panic_halt as _; use stm32f0xx_hal as hal; use crate::hal::{gpio::*, pac, prelude::*}; use cortex_m::{interrupt::Mutex, peripheral::syst::SystClkSource::Core, Peripherals}; use cortex_m_rt::{entry, exception}; use core::cell::RefCell; use core::ops::DerefMut; // Mutex protected structure for our shared GPIO pin static GPIO: Mutex>>>> = Mutex::new(RefCell::new(None)); #[entry] fn main() -> ! { if let (Some(mut p), Some(cp)) = (pac::Peripherals::take(), Peripherals::take()) { cortex_m::interrupt::free(move |cs| { let mut rcc = p.RCC.configure().sysclk(48.mhz()).freeze(&mut p.FLASH); let gpioa = p.GPIOA.split(&mut rcc); // (Re-)configure PA1 as output let led = gpioa.pa1.into_push_pull_output(cs); // Transfer GPIO into a shared structure *GPIO.borrow(cs).borrow_mut() = Some(led); let mut syst = cp.SYST; // Initialise SysTick counter with a defined value unsafe { syst.cvr.write(1) }; // Set source for SysTick counter, here full operating frequency (== 48MHz) syst.set_clock_source(Core); // Set reload value, i.e. timer delay 48 MHz/4 Mcounts == 12Hz or 83ms syst.set_reload(4_000_000 - 1); // Start counting syst.enable_counter(); // Enable interrupt generation syst.enable_interrupt(); }); } loop { continue; } } // Define an exception handler, i.e. function to call when exception occurs. Here, if our SysTick // timer generates an exception the following handler will be called #[exception] fn SysTick() { // Exception handler state variable static mut STATE: u8 = 1; // Enter critical section cortex_m::interrupt::free(|cs| { // Borrow access to our GPIO pin from the shared structure if let Some(ref mut led) = *GPIO.borrow(cs).borrow_mut().deref_mut() { // Check state variable, keep LED off most of the time and turn it on every 10th tick if *STATE < 10 { // Turn off the LED led.set_low().ok(); // And now increment state variable *STATE += 1; } else { // Turn on the LED led.set_high().ok(); // And set new state variable back to 0 *STATE = 0; } } }); }