/** * Creates extruded geometry from a path shape. * * parameters = { * * curveSegments: , // number of points on the curves * steps: , // number of points for z-side extrusions / used for subdividing segments of extrude spline too * depth: , // Depth to extrude the shape * * bevelEnabled: , // turn on bevel * bevelThickness: , // how deep into the original shape bevel goes * bevelSize: , // how far from shape outline (including bevelOffset) is bevel * bevelOffset: , // how far from shape outline does bevel start * bevelSegments: , // number of bevel layers * * extrudePath: // curve to extrude shape along * * UVGenerator: // object that provides UV generator functions * * } */ import { BufferGeometry } from '../core/BufferGeometry.js'; import { Float32BufferAttribute } from '../core/BufferAttribute.js'; import * as Curves from '../extras/curves/Curves.js'; import { Vector2 } from '../math/Vector2.js'; import { Vector3 } from '../math/Vector3.js'; import { Shape } from '../extras/core/Shape.js'; import { ShapeUtils } from '../extras/ShapeUtils.js'; class ExtrudeGeometry extends BufferGeometry { constructor( shapes = new Shape( [ new Vector2( 0.5, 0.5 ), new Vector2( - 0.5, 0.5 ), new Vector2( - 0.5, - 0.5 ), new Vector2( 0.5, - 0.5 ) ] ), options = {} ) { super(); this.type = 'ExtrudeGeometry'; this.parameters = { shapes: shapes, options: options }; shapes = Array.isArray( shapes ) ? shapes : [ shapes ]; const scope = this; const verticesArray = []; const uvArray = []; for ( let i = 0, l = shapes.length; i < l; i ++ ) { const shape = shapes[ i ]; addShape( shape ); } // build geometry this.setAttribute( 'position', new Float32BufferAttribute( verticesArray, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvArray, 2 ) ); this.computeVertexNormals(); // functions function addShape( shape ) { const placeholder = []; // options const curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12; const steps = options.steps !== undefined ? options.steps : 1; const depth = options.depth !== undefined ? options.depth : 1; let bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true; let bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 0.2; let bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 0.1; let bevelOffset = options.bevelOffset !== undefined ? options.bevelOffset : 0; let bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3; const extrudePath = options.extrudePath; const uvgen = options.UVGenerator !== undefined ? options.UVGenerator : WorldUVGenerator; // let extrudePts, extrudeByPath = false; let splineTube, binormal, normal, position2; if ( extrudePath ) { extrudePts = extrudePath.getSpacedPoints( steps ); extrudeByPath = true; bevelEnabled = false; // bevels not supported for path extrusion // SETUP TNB variables // TODO1 - have a .isClosed in spline? splineTube = extrudePath.computeFrenetFrames( steps, false ); // console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length); binormal = new Vector3(); normal = new Vector3(); position2 = new Vector3(); } // Safeguards if bevels are not enabled if ( ! bevelEnabled ) { bevelSegments = 0; bevelThickness = 0; bevelSize = 0; bevelOffset = 0; } // Variables initialization const shapePoints = shape.extractPoints( curveSegments ); let vertices = shapePoints.shape; const holes = shapePoints.holes; const reverse = ! ShapeUtils.isClockWise( vertices ); if ( reverse ) { vertices = vertices.reverse(); // Maybe we should also check if holes are in the opposite direction, just to be safe ... for ( let h = 0, hl = holes.length; h < hl; h ++ ) { const ahole = holes[ h ]; if ( ShapeUtils.isClockWise( ahole ) ) { holes[ h ] = ahole.reverse(); } } } const faces = ShapeUtils.triangulateShape( vertices, holes ); /* Vertices */ const contour = vertices; // vertices has all points but contour has only points of circumference for ( let h = 0, hl = holes.length; h < hl; h ++ ) { const ahole = holes[ h ]; vertices = vertices.concat( ahole ); } function scalePt2( pt, vec, size ) { if ( ! vec ) console.error( 'THREE.ExtrudeGeometry: vec does not exist' ); return pt.clone().addScaledVector( vec, size ); } const vlen = vertices.length, flen = faces.length; // Find directions for point movement function getBevelVec( inPt, inPrev, inNext ) { // computes for inPt the corresponding point inPt' on a new contour // shifted by 1 unit (length of normalized vector) to the left // if we walk along contour clockwise, this new contour is outside the old one // // inPt' is the intersection of the two lines parallel to the two // adjacent edges of inPt at a distance of 1 unit on the left side. let v_trans_x, v_trans_y, shrink_by; // resulting translation vector for inPt // good reading for geometry algorithms (here: line-line intersection) // http://geomalgorithms.com/a05-_intersect-1.html const v_prev_x = inPt.x - inPrev.x, v_prev_y = inPt.y - inPrev.y; const v_next_x = inNext.x - inPt.x, v_next_y = inNext.y - inPt.y; const v_prev_lensq = ( v_prev_x * v_prev_x + v_prev_y * v_prev_y ); // check for collinear edges const collinear0 = ( v_prev_x * v_next_y - v_prev_y * v_next_x ); if ( Math.abs( collinear0 ) > Number.EPSILON ) { // not collinear // length of vectors for normalizing const v_prev_len = Math.sqrt( v_prev_lensq ); const v_next_len = Math.sqrt( v_next_x * v_next_x + v_next_y * v_next_y ); // shift adjacent points by unit vectors to the left const ptPrevShift_x = ( inPrev.x - v_prev_y / v_prev_len ); const ptPrevShift_y = ( inPrev.y + v_prev_x / v_prev_len ); const ptNextShift_x = ( inNext.x - v_next_y / v_next_len ); const ptNextShift_y = ( inNext.y + v_next_x / v_next_len ); // scaling factor for v_prev to intersection point const sf = ( ( ptNextShift_x - ptPrevShift_x ) * v_next_y - ( ptNextShift_y - ptPrevShift_y ) * v_next_x ) / ( v_prev_x * v_next_y - v_prev_y * v_next_x ); // vector from inPt to intersection point v_trans_x = ( ptPrevShift_x + v_prev_x * sf - inPt.x ); v_trans_y = ( ptPrevShift_y + v_prev_y * sf - inPt.y ); // Don't normalize!, otherwise sharp corners become ugly // but prevent crazy spikes const v_trans_lensq = ( v_trans_x * v_trans_x + v_trans_y * v_trans_y ); if ( v_trans_lensq <= 2 ) { return new Vector2( v_trans_x, v_trans_y ); } else { shrink_by = Math.sqrt( v_trans_lensq / 2 ); } } else { // handle special case of collinear edges let direction_eq = false; // assumes: opposite if ( v_prev_x > Number.EPSILON ) { if ( v_next_x > Number.EPSILON ) { direction_eq = true; } } else { if ( v_prev_x < - Number.EPSILON ) { if ( v_next_x < - Number.EPSILON ) { direction_eq = true; } } else { if ( Math.sign( v_prev_y ) === Math.sign( v_next_y ) ) { direction_eq = true; } } } if ( direction_eq ) { // console.log("Warning: lines are a straight sequence"); v_trans_x = - v_prev_y; v_trans_y = v_prev_x; shrink_by = Math.sqrt( v_prev_lensq ); } else { // console.log("Warning: lines are a straight spike"); v_trans_x = v_prev_x; v_trans_y = v_prev_y; shrink_by = Math.sqrt( v_prev_lensq / 2 ); } } return new Vector2( v_trans_x / shrink_by, v_trans_y / shrink_by ); } const contourMovements = []; for ( let i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) { if ( j === il ) j = 0; if ( k === il ) k = 0; // (j)---(i)---(k) // console.log('i,j,k', i, j , k) contourMovements[ i ] = getBevelVec( contour[ i ], contour[ j ], contour[ k ] ); } const holesMovements = []; let oneHoleMovements, verticesMovements = contourMovements.concat(); for ( let h = 0, hl = holes.length; h < hl; h ++ ) { const ahole = holes[ h ]; oneHoleMovements = []; for ( let i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) { if ( j === il ) j = 0; if ( k === il ) k = 0; // (j)---(i)---(k) oneHoleMovements[ i ] = getBevelVec( ahole[ i ], ahole[ j ], ahole[ k ] ); } holesMovements.push( oneHoleMovements ); verticesMovements = verticesMovements.concat( oneHoleMovements ); } // Loop bevelSegments, 1 for the front, 1 for the back for ( let b = 0; b < bevelSegments; b ++ ) { //for ( b = bevelSegments; b > 0; b -- ) { const t = b / bevelSegments; const z = bevelThickness * Math.cos( t * Math.PI / 2 ); const bs = bevelSize * Math.sin( t * Math.PI / 2 ) + bevelOffset; // contract shape for ( let i = 0, il = contour.length; i < il; i ++ ) { const vert = scalePt2( contour[ i ], contourMovements[ i ], bs ); v( vert.x, vert.y, - z ); } // expand holes for ( let h = 0, hl = holes.length; h < hl; h ++ ) { const ahole = holes[ h ]; oneHoleMovements = holesMovements[ h ]; for ( let i = 0, il = ahole.length; i < il; i ++ ) { const vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs ); v( vert.x, vert.y, - z ); } } } const bs = bevelSize + bevelOffset; // Back facing vertices for ( let i = 0; i < vlen; i ++ ) { const vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ]; if ( ! extrudeByPath ) { v( vert.x, vert.y, 0 ); } else { // v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x ); normal.copy( splineTube.normals[ 0 ] ).multiplyScalar( vert.x ); binormal.copy( splineTube.binormals[ 0 ] ).multiplyScalar( vert.y ); position2.copy( extrudePts[ 0 ] ).add( normal ).add( binormal ); v( position2.x, position2.y, position2.z ); } } // Add stepped vertices... // Including front facing vertices for ( let s = 1; s <= steps; s ++ ) { for ( let i = 0; i < vlen; i ++ ) { const vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ]; if ( ! extrudeByPath ) { v( vert.x, vert.y, depth / steps * s ); } else { // v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x ); normal.copy( splineTube.normals[ s ] ).multiplyScalar( vert.x ); binormal.copy( splineTube.binormals[ s ] ).multiplyScalar( vert.y ); position2.copy( extrudePts[ s ] ).add( normal ).add( binormal ); v( position2.x, position2.y, position2.z ); } } } // Add bevel segments planes //for ( b = 1; b <= bevelSegments; b ++ ) { for ( let b = bevelSegments - 1; b >= 0; b -- ) { const t = b / bevelSegments; const z = bevelThickness * Math.cos( t * Math.PI / 2 ); const bs = bevelSize * Math.sin( t * Math.PI / 2 ) + bevelOffset; // contract shape for ( let i = 0, il = contour.length; i < il; i ++ ) { const vert = scalePt2( contour[ i ], contourMovements[ i ], bs ); v( vert.x, vert.y, depth + z ); } // expand holes for ( let h = 0, hl = holes.length; h < hl; h ++ ) { const ahole = holes[ h ]; oneHoleMovements = holesMovements[ h ]; for ( let i = 0, il = ahole.length; i < il; i ++ ) { const vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs ); if ( ! extrudeByPath ) { v( vert.x, vert.y, depth + z ); } else { v( vert.x, vert.y + extrudePts[ steps - 1 ].y, extrudePts[ steps - 1 ].x + z ); } } } } /* Faces */ // Top and bottom faces buildLidFaces(); // Sides faces buildSideFaces(); ///// Internal functions function buildLidFaces() { const start = verticesArray.length / 3; if ( bevelEnabled ) { let layer = 0; // steps + 1 let offset = vlen * layer; // Bottom faces for ( let i = 0; i < flen; i ++ ) { const face = faces[ i ]; f3( face[ 2 ] + offset, face[ 1 ] + offset, face[ 0 ] + offset ); } layer = steps + bevelSegments * 2; offset = vlen * layer; // Top faces for ( let i = 0; i < flen; i ++ ) { const face = faces[ i ]; f3( face[ 0 ] + offset, face[ 1 ] + offset, face[ 2 ] + offset ); } } else { // Bottom faces for ( let i = 0; i < flen; i ++ ) { const face = faces[ i ]; f3( face[ 2 ], face[ 1 ], face[ 0 ] ); } // Top faces for ( let i = 0; i < flen; i ++ ) { const face = faces[ i ]; f3( face[ 0 ] + vlen * steps, face[ 1 ] + vlen * steps, face[ 2 ] + vlen * steps ); } } scope.addGroup( start, verticesArray.length / 3 - start, 0 ); } // Create faces for the z-sides of the shape function buildSideFaces() { const start = verticesArray.length / 3; let layeroffset = 0; sidewalls( contour, layeroffset ); layeroffset += contour.length; for ( let h = 0, hl = holes.length; h < hl; h ++ ) { const ahole = holes[ h ]; sidewalls( ahole, layeroffset ); //, true layeroffset += ahole.length; } scope.addGroup( start, verticesArray.length / 3 - start, 1 ); } function sidewalls( contour, layeroffset ) { let i = contour.length; while ( -- i >= 0 ) { const j = i; let k = i - 1; if ( k < 0 ) k = contour.length - 1; //console.log('b', i,j, i-1, k,vertices.length); for ( let s = 0, sl = ( steps + bevelSegments * 2 ); s < sl; s ++ ) { const slen1 = vlen * s; const slen2 = vlen * ( s + 1 ); const a = layeroffset + j + slen1, b = layeroffset + k + slen1, c = layeroffset + k + slen2, d = layeroffset + j + slen2; f4( a, b, c, d ); } } } function v( x, y, z ) { placeholder.push( x ); placeholder.push( y ); placeholder.push( z ); } function f3( a, b, c ) { addVertex( a ); addVertex( b ); addVertex( c ); const nextIndex = verticesArray.length / 3; const uvs = uvgen.generateTopUV( scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1 ); addUV( uvs[ 0 ] ); addUV( uvs[ 1 ] ); addUV( uvs[ 2 ] ); } function f4( a, b, c, d ) { addVertex( a ); addVertex( b ); addVertex( d ); addVertex( b ); addVertex( c ); addVertex( d ); const nextIndex = verticesArray.length / 3; const uvs = uvgen.generateSideWallUV( scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1 ); addUV( uvs[ 0 ] ); addUV( uvs[ 1 ] ); addUV( uvs[ 3 ] ); addUV( uvs[ 1 ] ); addUV( uvs[ 2 ] ); addUV( uvs[ 3 ] ); } function addVertex( index ) { verticesArray.push( placeholder[ index * 3 + 0 ] ); verticesArray.push( placeholder[ index * 3 + 1 ] ); verticesArray.push( placeholder[ index * 3 + 2 ] ); } function addUV( vector2 ) { uvArray.push( vector2.x ); uvArray.push( vector2.y ); } } } copy( source ) { super.copy( source ); this.parameters = Object.assign( {}, source.parameters ); return this; } toJSON() { const data = super.toJSON(); const shapes = this.parameters.shapes; const options = this.parameters.options; return toJSON( shapes, options, data ); } static fromJSON( data, shapes ) { const geometryShapes = []; for ( let j = 0, jl = data.shapes.length; j < jl; j ++ ) { const shape = shapes[ data.shapes[ j ] ]; geometryShapes.push( shape ); } const extrudePath = data.options.extrudePath; if ( extrudePath !== undefined ) { data.options.extrudePath = new Curves[ extrudePath.type ]().fromJSON( extrudePath ); } return new ExtrudeGeometry( geometryShapes, data.options ); } } const WorldUVGenerator = { generateTopUV: function ( geometry, vertices, indexA, indexB, indexC ) { const a_x = vertices[ indexA * 3 ]; const a_y = vertices[ indexA * 3 + 1 ]; const b_x = vertices[ indexB * 3 ]; const b_y = vertices[ indexB * 3 + 1 ]; const c_x = vertices[ indexC * 3 ]; const c_y = vertices[ indexC * 3 + 1 ]; return [ new Vector2( a_x, a_y ), new Vector2( b_x, b_y ), new Vector2( c_x, c_y ) ]; }, generateSideWallUV: function ( geometry, vertices, indexA, indexB, indexC, indexD ) { const a_x = vertices[ indexA * 3 ]; const a_y = vertices[ indexA * 3 + 1 ]; const a_z = vertices[ indexA * 3 + 2 ]; const b_x = vertices[ indexB * 3 ]; const b_y = vertices[ indexB * 3 + 1 ]; const b_z = vertices[ indexB * 3 + 2 ]; const c_x = vertices[ indexC * 3 ]; const c_y = vertices[ indexC * 3 + 1 ]; const c_z = vertices[ indexC * 3 + 2 ]; const d_x = vertices[ indexD * 3 ]; const d_y = vertices[ indexD * 3 + 1 ]; const d_z = vertices[ indexD * 3 + 2 ]; if ( Math.abs( a_y - b_y ) < Math.abs( a_x - b_x ) ) { return [ new Vector2( a_x, 1 - a_z ), new Vector2( b_x, 1 - b_z ), new Vector2( c_x, 1 - c_z ), new Vector2( d_x, 1 - d_z ) ]; } else { return [ new Vector2( a_y, 1 - a_z ), new Vector2( b_y, 1 - b_z ), new Vector2( c_y, 1 - c_z ), new Vector2( d_y, 1 - d_z ) ]; } } }; function toJSON( shapes, options, data ) { data.shapes = []; if ( Array.isArray( shapes ) ) { for ( let i = 0, l = shapes.length; i < l; i ++ ) { const shape = shapes[ i ]; data.shapes.push( shape.uuid ); } } else { data.shapes.push( shapes.uuid ); } data.options = Object.assign( {}, options ); if ( options.extrudePath !== undefined ) data.options.extrudePath = options.extrudePath.toJSON(); return data; } export { ExtrudeGeometry };