import { BufferGeometry } from '../core/BufferGeometry.js'; import { Float32BufferAttribute } from '../core/BufferAttribute.js'; import { Vector3 } from '../math/Vector3.js'; class TorusKnotGeometry extends BufferGeometry { constructor( radius = 1, tube = 0.4, tubularSegments = 64, radialSegments = 8, p = 2, q = 3 ) { super(); this.type = 'TorusKnotGeometry'; this.parameters = { radius: radius, tube: tube, tubularSegments: tubularSegments, radialSegments: radialSegments, p: p, q: q }; tubularSegments = Math.floor( tubularSegments ); radialSegments = Math.floor( radialSegments ); // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // helper variables const vertex = new Vector3(); const normal = new Vector3(); const P1 = new Vector3(); const P2 = new Vector3(); const B = new Vector3(); const T = new Vector3(); const N = new Vector3(); // generate vertices, normals and uvs for ( let i = 0; i <= tubularSegments; ++ i ) { // the radian "u" is used to calculate the position on the torus curve of the current tubular segment const u = i / tubularSegments * p * Math.PI * 2; // now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead. // these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions calculatePositionOnCurve( u, p, q, radius, P1 ); calculatePositionOnCurve( u + 0.01, p, q, radius, P2 ); // calculate orthonormal basis T.subVectors( P2, P1 ); N.addVectors( P2, P1 ); B.crossVectors( T, N ); N.crossVectors( B, T ); // normalize B, N. T can be ignored, we don't use it B.normalize(); N.normalize(); for ( let j = 0; j <= radialSegments; ++ j ) { // now calculate the vertices. they are nothing more than an extrusion of the torus curve. // because we extrude a shape in the xy-plane, there is no need to calculate a z-value. const v = j / radialSegments * Math.PI * 2; const cx = - tube * Math.cos( v ); const cy = tube * Math.sin( v ); // now calculate the final vertex position. // first we orient the extrusion with our basis vectors, then we add it to the current position on the curve vertex.x = P1.x + ( cx * N.x + cy * B.x ); vertex.y = P1.y + ( cx * N.y + cy * B.y ); vertex.z = P1.z + ( cx * N.z + cy * B.z ); vertices.push( vertex.x, vertex.y, vertex.z ); // normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal) normal.subVectors( vertex, P1 ).normalize(); normals.push( normal.x, normal.y, normal.z ); // uv uvs.push( i / tubularSegments ); uvs.push( j / radialSegments ); } } // generate indices for ( let j = 1; j <= tubularSegments; j ++ ) { for ( let i = 1; i <= radialSegments; i ++ ) { // indices const a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 ); const b = ( radialSegments + 1 ) * j + ( i - 1 ); const c = ( radialSegments + 1 ) * j + i; const d = ( radialSegments + 1 ) * ( j - 1 ) + i; // faces indices.push( a, b, d ); indices.push( b, c, d ); } } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); // this function calculates the current position on the torus curve function calculatePositionOnCurve( u, p, q, radius, position ) { const cu = Math.cos( u ); const su = Math.sin( u ); const quOverP = q / p * u; const cs = Math.cos( quOverP ); position.x = radius * ( 2 + cs ) * 0.5 * cu; position.y = radius * ( 2 + cs ) * su * 0.5; position.z = radius * Math.sin( quOverP ) * 0.5; } } copy( source ) { super.copy( source ); this.parameters = Object.assign( {}, source.parameters ); return this; } static fromJSON( data ) { return new TorusKnotGeometry( data.radius, data.tube, data.tubularSegments, data.radialSegments, data.p, data.q ); } } export { TorusKnotGeometry };