import { Matrix3 } from './Matrix3.js'; import { Vector3 } from './Vector3.js'; const _vector1 = /*@__PURE__*/ new Vector3(); const _vector2 = /*@__PURE__*/ new Vector3(); const _normalMatrix = /*@__PURE__*/ new Matrix3(); class Plane { constructor( normal = new Vector3( 1, 0, 0 ), constant = 0 ) { this.isPlane = true; // normal is assumed to be normalized this.normal = normal; this.constant = constant; } set( normal, constant ) { this.normal.copy( normal ); this.constant = constant; return this; } setComponents( x, y, z, w ) { this.normal.set( x, y, z ); this.constant = w; return this; } setFromNormalAndCoplanarPoint( normal, point ) { this.normal.copy( normal ); this.constant = - point.dot( this.normal ); return this; } setFromCoplanarPoints( a, b, c ) { const normal = _vector1.subVectors( c, b ).cross( _vector2.subVectors( a, b ) ).normalize(); // Q: should an error be thrown if normal is zero (e.g. degenerate plane)? this.setFromNormalAndCoplanarPoint( normal, a ); return this; } copy( plane ) { this.normal.copy( plane.normal ); this.constant = plane.constant; return this; } normalize() { // Note: will lead to a divide by zero if the plane is invalid. const inverseNormalLength = 1.0 / this.normal.length(); this.normal.multiplyScalar( inverseNormalLength ); this.constant *= inverseNormalLength; return this; } negate() { this.constant *= - 1; this.normal.negate(); return this; } distanceToPoint( point ) { return this.normal.dot( point ) + this.constant; } distanceToSphere( sphere ) { return this.distanceToPoint( sphere.center ) - sphere.radius; } projectPoint( point, target ) { return target.copy( point ).addScaledVector( this.normal, - this.distanceToPoint( point ) ); } intersectLine( line, target ) { const direction = line.delta( _vector1 ); const denominator = this.normal.dot( direction ); if ( denominator === 0 ) { // line is coplanar, return origin if ( this.distanceToPoint( line.start ) === 0 ) { return target.copy( line.start ); } // Unsure if this is the correct method to handle this case. return null; } const t = - ( line.start.dot( this.normal ) + this.constant ) / denominator; if ( t < 0 || t > 1 ) { return null; } return target.copy( line.start ).addScaledVector( direction, t ); } intersectsLine( line ) { // Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it. const startSign = this.distanceToPoint( line.start ); const endSign = this.distanceToPoint( line.end ); return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 ); } intersectsBox( box ) { return box.intersectsPlane( this ); } intersectsSphere( sphere ) { return sphere.intersectsPlane( this ); } coplanarPoint( target ) { return target.copy( this.normal ).multiplyScalar( - this.constant ); } applyMatrix4( matrix, optionalNormalMatrix ) { const normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix( matrix ); const referencePoint = this.coplanarPoint( _vector1 ).applyMatrix4( matrix ); const normal = this.normal.applyMatrix3( normalMatrix ).normalize(); this.constant = - referencePoint.dot( normal ); return this; } translate( offset ) { this.constant -= offset.dot( this.normal ); return this; } equals( plane ) { return plane.normal.equals( this.normal ) && ( plane.constant === this.constant ); } clone() { return new this.constructor().copy( this ); } } export { Plane };