import * as MathUtils from './MathUtils.js'; import { Quaternion } from './Quaternion.js'; class Vector3 { constructor( x = 0, y = 0, z = 0 ) { Vector3.prototype.isVector3 = true; this.x = x; this.y = y; this.z = z; } set( x, y, z ) { if ( z === undefined ) z = this.z; // sprite.scale.set(x,y) this.x = x; this.y = y; this.z = z; return this; } setScalar( scalar ) { this.x = scalar; this.y = scalar; this.z = scalar; return this; } setX( x ) { this.x = x; return this; } setY( y ) { this.y = y; return this; } setZ( z ) { this.z = z; return this; } setComponent( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; default: throw new Error( 'index is out of range: ' + index ); } return this; } getComponent( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; case 2: return this.z; default: throw new Error( 'index is out of range: ' + index ); } } clone() { return new this.constructor( this.x, this.y, this.z ); } copy( v ) { this.x = v.x; this.y = v.y; this.z = v.z; return this; } add( v ) { this.x += v.x; this.y += v.y; this.z += v.z; return this; } addScalar( s ) { this.x += s; this.y += s; this.z += s; return this; } addVectors( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; return this; } addScaledVector( v, s ) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; return this; } sub( v ) { this.x -= v.x; this.y -= v.y; this.z -= v.z; return this; } subScalar( s ) { this.x -= s; this.y -= s; this.z -= s; return this; } subVectors( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; return this; } multiply( v ) { this.x *= v.x; this.y *= v.y; this.z *= v.z; return this; } multiplyScalar( scalar ) { this.x *= scalar; this.y *= scalar; this.z *= scalar; return this; } multiplyVectors( a, b ) { this.x = a.x * b.x; this.y = a.y * b.y; this.z = a.z * b.z; return this; } applyEuler( euler ) { return this.applyQuaternion( _quaternion.setFromEuler( euler ) ); } applyAxisAngle( axis, angle ) { return this.applyQuaternion( _quaternion.setFromAxisAngle( axis, angle ) ); } applyMatrix3( m ) { const x = this.x, y = this.y, z = this.z; const e = m.elements; this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z; this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z; this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z; return this; } applyNormalMatrix( m ) { return this.applyMatrix3( m ).normalize(); } applyMatrix4( m ) { const x = this.x, y = this.y, z = this.z; const e = m.elements; const w = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] ); this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * w; this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * w; this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * w; return this; } applyQuaternion( q ) { const x = this.x, y = this.y, z = this.z; const qx = q.x, qy = q.y, qz = q.z, qw = q.w; // calculate quat * vector const ix = qw * x + qy * z - qz * y; const iy = qw * y + qz * x - qx * z; const iz = qw * z + qx * y - qy * x; const iw = - qx * x - qy * y - qz * z; // calculate result * inverse quat this.x = ix * qw + iw * - qx + iy * - qz - iz * - qy; this.y = iy * qw + iw * - qy + iz * - qx - ix * - qz; this.z = iz * qw + iw * - qz + ix * - qy - iy * - qx; return this; } project( camera ) { return this.applyMatrix4( camera.matrixWorldInverse ).applyMatrix4( camera.projectionMatrix ); } unproject( camera ) { return this.applyMatrix4( camera.projectionMatrixInverse ).applyMatrix4( camera.matrixWorld ); } transformDirection( m ) { // input: THREE.Matrix4 affine matrix // vector interpreted as a direction const x = this.x, y = this.y, z = this.z; const e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z; return this.normalize(); } divide( v ) { this.x /= v.x; this.y /= v.y; this.z /= v.z; return this; } divideScalar( scalar ) { return this.multiplyScalar( 1 / scalar ); } min( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); this.z = Math.min( this.z, v.z ); return this; } max( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); this.z = Math.max( this.z, v.z ); return this; } clamp( min, max ) { // assumes min < max, componentwise this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); this.z = Math.max( min.z, Math.min( max.z, this.z ) ); return this; } clampScalar( minVal, maxVal ) { this.x = Math.max( minVal, Math.min( maxVal, this.x ) ); this.y = Math.max( minVal, Math.min( maxVal, this.y ) ); this.z = Math.max( minVal, Math.min( maxVal, this.z ) ); return this; } clampLength( min, max ) { const length = this.length(); return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) ); } floor() { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); this.z = Math.floor( this.z ); return this; } ceil() { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); this.z = Math.ceil( this.z ); return this; } round() { this.x = Math.round( this.x ); this.y = Math.round( this.y ); this.z = Math.round( this.z ); return this; } roundToZero() { this.x = Math.trunc( this.x ); this.y = Math.trunc( this.y ); this.z = Math.trunc( this.z ); return this; } negate() { this.x = - this.x; this.y = - this.y; this.z = - this.z; return this; } dot( v ) { return this.x * v.x + this.y * v.y + this.z * v.z; } // TODO lengthSquared? lengthSq() { return this.x * this.x + this.y * this.y + this.z * this.z; } length() { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z ); } manhattanLength() { return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ); } normalize() { return this.divideScalar( this.length() || 1 ); } setLength( length ) { return this.normalize().multiplyScalar( length ); } lerp( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; return this; } lerpVectors( v1, v2, alpha ) { this.x = v1.x + ( v2.x - v1.x ) * alpha; this.y = v1.y + ( v2.y - v1.y ) * alpha; this.z = v1.z + ( v2.z - v1.z ) * alpha; return this; } cross( v ) { return this.crossVectors( this, v ); } crossVectors( a, b ) { const ax = a.x, ay = a.y, az = a.z; const bx = b.x, by = b.y, bz = b.z; this.x = ay * bz - az * by; this.y = az * bx - ax * bz; this.z = ax * by - ay * bx; return this; } projectOnVector( v ) { const denominator = v.lengthSq(); if ( denominator === 0 ) return this.set( 0, 0, 0 ); const scalar = v.dot( this ) / denominator; return this.copy( v ).multiplyScalar( scalar ); } projectOnPlane( planeNormal ) { _vector.copy( this ).projectOnVector( planeNormal ); return this.sub( _vector ); } reflect( normal ) { // reflect incident vector off plane orthogonal to normal // normal is assumed to have unit length return this.sub( _vector.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) ); } angleTo( v ) { const denominator = Math.sqrt( this.lengthSq() * v.lengthSq() ); if ( denominator === 0 ) return Math.PI / 2; const theta = this.dot( v ) / denominator; // clamp, to handle numerical problems return Math.acos( MathUtils.clamp( theta, - 1, 1 ) ); } distanceTo( v ) { return Math.sqrt( this.distanceToSquared( v ) ); } distanceToSquared( v ) { const dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z; return dx * dx + dy * dy + dz * dz; } manhattanDistanceTo( v ) { return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z ); } setFromSpherical( s ) { return this.setFromSphericalCoords( s.radius, s.phi, s.theta ); } setFromSphericalCoords( radius, phi, theta ) { const sinPhiRadius = Math.sin( phi ) * radius; this.x = sinPhiRadius * Math.sin( theta ); this.y = Math.cos( phi ) * radius; this.z = sinPhiRadius * Math.cos( theta ); return this; } setFromCylindrical( c ) { return this.setFromCylindricalCoords( c.radius, c.theta, c.y ); } setFromCylindricalCoords( radius, theta, y ) { this.x = radius * Math.sin( theta ); this.y = y; this.z = radius * Math.cos( theta ); return this; } setFromMatrixPosition( m ) { const e = m.elements; this.x = e[ 12 ]; this.y = e[ 13 ]; this.z = e[ 14 ]; return this; } setFromMatrixScale( m ) { const sx = this.setFromMatrixColumn( m, 0 ).length(); const sy = this.setFromMatrixColumn( m, 1 ).length(); const sz = this.setFromMatrixColumn( m, 2 ).length(); this.x = sx; this.y = sy; this.z = sz; return this; } setFromMatrixColumn( m, index ) { return this.fromArray( m.elements, index * 4 ); } setFromMatrix3Column( m, index ) { return this.fromArray( m.elements, index * 3 ); } setFromEuler( e ) { this.x = e._x; this.y = e._y; this.z = e._z; return this; } setFromColor( c ) { this.x = c.r; this.y = c.g; this.z = c.b; return this; } equals( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) ); } fromArray( array, offset = 0 ) { this.x = array[ offset ]; this.y = array[ offset + 1 ]; this.z = array[ offset + 2 ]; return this; } toArray( array = [], offset = 0 ) { array[ offset ] = this.x; array[ offset + 1 ] = this.y; array[ offset + 2 ] = this.z; return array; } fromBufferAttribute( attribute, index ) { this.x = attribute.getX( index ); this.y = attribute.getY( index ); this.z = attribute.getZ( index ); return this; } random() { this.x = Math.random(); this.y = Math.random(); this.z = Math.random(); return this; } randomDirection() { // Derived from https://mathworld.wolfram.com/SpherePointPicking.html const u = ( Math.random() - 0.5 ) * 2; const t = Math.random() * Math.PI * 2; const f = Math.sqrt( 1 - u ** 2 ); this.x = f * Math.cos( t ); this.y = f * Math.sin( t ); this.z = u; return this; } *[ Symbol.iterator ]() { yield this.x; yield this.y; yield this.z; } } const _vector = /*@__PURE__*/ new Vector3(); const _quaternion = /*@__PURE__*/ new Quaternion(); export { Vector3 };