export default /* glsl */` #define PI 3.141592653589793 #define PI2 6.283185307179586 #define PI_HALF 1.5707963267948966 #define RECIPROCAL_PI 0.3183098861837907 #define RECIPROCAL_PI2 0.15915494309189535 #define EPSILON 1e-6 #ifndef saturate // may have defined saturate() already #define saturate( a ) clamp( a, 0.0, 1.0 ) #endif #define whiteComplement( a ) ( 1.0 - saturate( a ) ) float pow2( const in float x ) { return x*x; } vec3 pow2( const in vec3 x ) { return x*x; } float pow3( const in float x ) { return x*x*x; } float pow4( const in float x ) { float x2 = x*x; return x2*x2; } float max3( const in vec3 v ) { return max( max( v.x, v.y ), v.z ); } float average( const in vec3 v ) { return dot( v, vec3( 0.3333333 ) ); } // expects values in the range of [0,1]x[0,1], returns values in the [0,1] range. // do not collapse into a single function per: http://byteblacksmith.com/improvements-to-the-canonical-one-liner-glsl-rand-for-opengl-es-2-0/ highp float rand( const in vec2 uv ) { const highp float a = 12.9898, b = 78.233, c = 43758.5453; highp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI ); return fract( sin( sn ) * c ); } #ifdef HIGH_PRECISION float precisionSafeLength( vec3 v ) { return length( v ); } #else float precisionSafeLength( vec3 v ) { float maxComponent = max3( abs( v ) ); return length( v / maxComponent ) * maxComponent; } #endif struct IncidentLight { vec3 color; vec3 direction; bool visible; }; struct ReflectedLight { vec3 directDiffuse; vec3 directSpecular; vec3 indirectDiffuse; vec3 indirectSpecular; }; struct GeometricContext { vec3 position; vec3 normal; vec3 viewDir; #ifdef USE_CLEARCOAT vec3 clearcoatNormal; #endif }; #ifdef USE_ALPHAHASH varying vec3 vPosition; #endif vec3 transformDirection( in vec3 dir, in mat4 matrix ) { return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz ); } vec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) { // dir can be either a direction vector or a normal vector // upper-left 3x3 of matrix is assumed to be orthogonal return normalize( ( vec4( dir, 0.0 ) * matrix ).xyz ); } mat3 transposeMat3( const in mat3 m ) { mat3 tmp; tmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x ); tmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y ); tmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z ); return tmp; } float luminance( const in vec3 rgb ) { // assumes rgb is in linear color space with sRGB primaries and D65 white point const vec3 weights = vec3( 0.2126729, 0.7151522, 0.0721750 ); return dot( weights, rgb ); } bool isPerspectiveMatrix( mat4 m ) { return m[ 2 ][ 3 ] == - 1.0; } vec2 equirectUv( in vec3 dir ) { // dir is assumed to be unit length float u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5; float v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5; return vec2( u, v ); } vec3 BRDF_Lambert( const in vec3 diffuseColor ) { return RECIPROCAL_PI * diffuseColor; } // validated vec3 F_Schlick( const in vec3 f0, const in float f90, const in float dotVH ) { // Original approximation by Christophe Schlick '94 // float fresnel = pow( 1.0 - dotVH, 5.0 ); // Optimized variant (presented by Epic at SIGGRAPH '13) // https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf float fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH ); return f0 * ( 1.0 - fresnel ) + ( f90 * fresnel ); } // validated float F_Schlick( const in float f0, const in float f90, const in float dotVH ) { // Original approximation by Christophe Schlick '94 // float fresnel = pow( 1.0 - dotVH, 5.0 ); // Optimized variant (presented by Epic at SIGGRAPH '13) // https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf float fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH ); return f0 * ( 1.0 - fresnel ) + ( f90 * fresnel ); } // validated `;