\h1{Geometry} \h2{Lorem \{x^2} Ipsum} \h2{Definition of a Line} \img[width=500px center src=../static/drawings/matrix/vector-equation-of-a-line.png] \note[boxed] { \h3{Symmetric Equation of a Line} Given \equation { t &= \frac{x - x_1}{x_2-x_1} = \frac{x - x_1}{\Delta_x}\\ t &= \frac{y - y_1}{y_2-y_1} = \frac{y - y_1}{\Delta_y}\\ t &= \frac{z - z_1}{z_2-z_1} = \frac{z - z_1}{\Delta_z} } Therefore \equation { \frac{x - x_1}{Delta_x} &= \frac{y - y_1}{\Delta_y} = \frac{z - z_1}{\Delta_z}\\ \frac{x - x_1}{x_2-x_1} &= \frac{y - y_1}{y_2-y_1} = \frac{z - z_1}{z_2-z_1} } \hr \h4{Rationale} We rewrite \{r = r_0 + a = r_0 + t v} in terms of \{t}. That is \equation{ x &= x_1 + t(x_2-x_1) = x_1 + t\;Delta_x\\ t\;Delta_x &= x - x_1 = t(x_2-x_1)\\ t &= \frac{x - x_1}{x_2-x_1} = \frac{x - x_1}{Delta_x} \\\\ y &= y_1 + t(y_2-y_1) = y_1 + t\;\Delta_y\\ t\;\Delta_y &= y - y_1 = t(y_2-y_1)\\ t &= \frac{y - y_1}{y_2-y_1} = \frac{y - y_1}{\Delta_y} \\\\ z &= z_1 + t(z_2-z_1) = z_1 + t\;\Delta_z\\ t\;\Delta_z &= z - z_1 = t(z_2-z_1) \\ t &= \frac{z - z_1}{z_2-z_1} = \frac{z - z_1}{\Delta_z} } } \!where { {\Delta_x} => {\colorA{\Delta_x}} {\Delta_y} => {\colorA{\Delta_y}} {\Delta_z} => {\colorA{\Delta_z}} {x_1} => {\colorB{x_1}} {y_1} => {\colorB{y_1}} {z_1} => {\colorB{z_1}} } \h2{Vector Calculus} \layout[cols=3] { \note { \h3{The Position Vector \{\vec{r}}} \equation { \dots } } \note { \h3{The Velocity Vector \{\vec{v}}} \equation { \dots } } \note { \h3{The Acceleration Vector \{\vec{a}}} \equation { \vec{a} = \lim_{t\to 0} \frac {\vec{v}(t + \Delta t)-\vec{v}} {\Delta t} = \frac {\mathrm{d}\vec{v}} {\mathrm{d}t} } } }