\h1{Hello world} \h2{Hello world} \h3{Hello world} \h4{Hello world} \h5{Hello world} \h6{Hello world} \h1{Basic Electrical Quantities} \layout[cols=3] { \note{ \h2{Charge} } \note{ \h2{Conductors and insulators} } \note{ \h2{Current} \equation{ i &= \frac{\mathrm{d}q}{\mathrm{d}t} } } \note{ \h2{Voltage} } \note{ \h2{Power} Power is defined as the rate energy \{U} is transformed or transferred over time. We measure power in units of joules/second, also known as watts. \equation { \text{power} &= \frac{\mathrm{d}U}{\mathrm{d}t} } An electric circuit is capable of transferring power. \li{Current is the rate of flow of charge} \li{voltage measures the energy transferred per unit of charge} We can insert these definitions into the equation for power: \equation { \text{power} &= \frac{\mathrm{d}U}{\mathrm{d}t}\\ &= \frac{\mathrm{d}U}{\mathrm{d}q}\cdot\frac{\mathrm{d}q}{\mathrm{d}t}\\ &= v \cdot i } Electrical power is the product of voltage times current. in units of watts. } } \h1{Standard Electrical Units} \layout[cols=2] { \note{ \h2{SI base units} \table { \tr{ \td{Name} \td{Symbol} \td{Quantity} } \tr{ \td{meter} \td{\{m}} \td{length} } \tr{ \td{kilogram} \td{\{\mathrm{kg}}} \td{mass} } \tr{ \td{second} \td{\{\mathrm{s}}} \td{time} } \tr{ \td{ampere} \td{\{\mathrm{A}}} \td{electric current} } \tr{ \td{kelvin} \td{\{\mathrm{K}}} \td{temperature} } \tr{ \td{candela} \td{\{\mathrm{cd}}} \td{luminous intensity} } \tr{ \td{mole} \td{\{\mathrm{mol}}} \td{amount of substance} } } } \note{ \h2{SI derived units used in electricity} \table{ \tr{ \td{Name} \td{Symbol} \td{Quantity} \td{In terms of other SI units} } \tr{ \td{coulomb} \td{\{C}} \td{charge} \td{\{\mathrm{A}\cdot\mathrm{s}}} } \tr{ \td{watt} \td{\{W}} \td{power} \td{\{\frac{\mathrm{J}}{\mathrm{s}}}} } \tr{ \td{volt} \td{\{V}} \td{voltage (electric potential difference)} \td{\{\frac{\mathrm{W}}{\mathrm{A}}}} } \tr{ \td{ohm} \td{\{Ω}} \td{resistance impedance} \td{\{\frac{\mathrm{V}}{\mathrm{A}}}} } \tr{ \td{farad} \td{\{F}} \td{capacitance} \td{\{\frac{\mathrm{C}}{\mathrm{V}}}} } \tr{ \td{henry} \td{\{H}} \td{inductance} \td{\{\frac{\mathrm{Wb}}{\mathrm{A}}}} } \tr{ \td{hertz} \td{\{Hz}} \td{frequency} \td{\{s^{-1}}} } \tr{ \td{siemens} \td{\{S}} \td{conductance} \td{\{\frac{\mathrm{A}}{\mathrm{V}}} or \{\frac{\mathrm{1}}{\mathrm{Ω}}}} } \tr{ \td{weber} \td{\{Wb}} \td{magnetic flux} \td{\{\mathrm{V}\cdot\mathrm{s}}} } \tr{ \td{tesla} \td{\{T}} \td{magnetic field strength} \td{\{\frac{\mathrm{Wb}}{\mathrm{m^2}}}} } } } } \layout[cols=3] { \note{ \h2{Ampere} } \note{ \h2{Coulomb} } \note{ \h2{Electron charge} } \note{ \h2{Watt} } \note{ \h2{Volt} } \note{ \h2{Ohm} } } \h1{Ideal Circuit Elements} \layout[cols=3] { \note{ \h2{Resistor (\{R})} \equation{ v = i \cdot R } } \note{ \h2{Capacitor (\{C})} \equation{ i = C \frac{\mathrm{d}v}{\mathrm{d}t} } } \note{ \h2{Inductor (\{L})} \equation{ v = L \cdot \frac{\mathrm{d}i}{\mathrm{d}t } } } } \h1{Ideal Sources} \layout[cols=2] { \note{ \h2{Ideal Voltage Source} \equation{ TODO } } \note{ \h2{Ideal Current Source} \equation{ TODO } } }