// CXSparse/Source/cs_dmperm: Dulmage-Mendelsohn permutation // CXSparse, Copyright (c) 2006-2022, Timothy A. Davis. All Rights Reserved. // SPDX-License-Identifier: LGPL-2.1+ #include "cs.h" /* breadth-first search for coarse decomposition (C0,C1,R1 or R0,R3,C3) */ static CS_INT cs_bfs (const cs *A, CS_INT n, CS_INT *wi, CS_INT *wj, CS_INT *queue, const CS_INT *imatch, const CS_INT *jmatch, CS_INT mark) { CS_INT *Ap, *Ai, head = 0, tail = 0, j, i, p, j2 ; cs *C ; for (j = 0 ; j < n ; j++) /* place all unmatched nodes in queue */ { if (imatch [j] >= 0) continue ; /* skip j if matched */ wj [j] = 0 ; /* j in set C0 (R0 if transpose) */ queue [tail++] = j ; /* place unmatched col j in queue */ } if (tail == 0) return (1) ; /* quick return if no unmatched nodes */ C = (mark == 1) ? ((cs *) A) : cs_transpose (A, 0) ; if (!C) return (0) ; /* bfs of C=A' to find R3,C3 from R0 */ Ap = C->p ; Ai = C->i ; while (head < tail) /* while queue is not empty */ { j = queue [head++] ; /* get the head of the queue */ for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; if (wi [i] >= 0) continue ; /* skip if i is marked */ wi [i] = mark ; /* i in set R1 (C3 if transpose) */ j2 = jmatch [i] ; /* traverse alternating path to j2 */ if (wj [j2] >= 0) continue ;/* skip j2 if it is marked */ wj [j2] = mark ; /* j2 in set C1 (R3 if transpose) */ queue [tail++] = j2 ; /* add j2 to queue */ } } if (mark != 1) cs_spfree (C) ; /* free A' if it was created */ return (1) ; } /* collect matched rows and columns into p and q */ static void cs_matched (CS_INT n, const CS_INT *wj, const CS_INT *imatch, CS_INT *p, CS_INT *q, CS_INT *cc, CS_INT *rr, CS_INT set, CS_INT mark) { CS_INT kc = cc [set], j ; CS_INT kr = rr [set-1] ; for (j = 0 ; j < n ; j++) { if (wj [j] != mark) continue ; /* skip if j is not in C set */ p [kr++] = imatch [j] ; q [kc++] = j ; } cc [set+1] = kc ; rr [set] = kr ; } /* collect unmatched rows into the permutation vector p */ static void cs_unmatched (CS_INT m, const CS_INT *wi, CS_INT *p, CS_INT *rr, CS_INT set) { CS_INT i, kr = rr [set] ; for (i = 0 ; i < m ; i++) if (wi [i] == 0) p [kr++] = i ; rr [set+1] = kr ; } /* return 1 if row i is in R2 */ static CS_INT cs_rprune (CS_INT i, CS_INT j, CS_ENTRY aij, void *other) { CS_INT *rr = (CS_INT *) other ; return (i >= rr [1] && i < rr [2]) ; } /* Given A, compute coarse and then fine dmperm */ csd *cs_dmperm (const cs *A, CS_INT seed) { CS_INT m, n, i, j, k, cnz, nc, *jmatch, *imatch, *wi, *wj, *pinv, *Cp, *Ci, *ps, *rs, nb1, nb2, *p, *q, *cc, *rr, *r, *s, ok ; cs *C ; csd *D, *scc ; /* --- Maximum matching ------------------------------------------------- */ if (!CS_CSC (A)) return (NULL) ; /* check inputs */ m = A->m ; n = A->n ; D = cs_dalloc (m, n) ; /* allocate result */ if (!D) return (NULL) ; p = D->p ; q = D->q ; r = D->r ; s = D->s ; cc = D->cc ; rr = D->rr ; jmatch = cs_maxtrans (A, seed) ; /* max transversal */ imatch = jmatch + m ; /* imatch = inverse of jmatch */ if (!jmatch) return (cs_ddone (D, NULL, jmatch, 0)) ; /* --- Coarse decomposition --------------------------------------------- */ wi = r ; wj = s ; /* use r and s as workspace */ for (j = 0 ; j < n ; j++) wj [j] = -1 ; /* unmark all cols for bfs */ for (i = 0 ; i < m ; i++) wi [i] = -1 ; /* unmark all rows for bfs */ cs_bfs (A, n, wi, wj, q, imatch, jmatch, 1) ; /* find C1, R1 from C0*/ ok = cs_bfs (A, m, wj, wi, p, jmatch, imatch, 3) ; /* find R3, C3 from R0*/ if (!ok) return (cs_ddone (D, NULL, jmatch, 0)) ; cs_unmatched (n, wj, q, cc, 0) ; /* unmatched set C0 */ cs_matched (n, wj, imatch, p, q, cc, rr, 1, 1) ; /* set R1 and C1 */ cs_matched (n, wj, imatch, p, q, cc, rr, 2, -1) ; /* set R2 and C2 */ cs_matched (n, wj, imatch, p, q, cc, rr, 3, 3) ; /* set R3 and C3 */ cs_unmatched (m, wi, p, rr, 3) ; /* unmatched set R0 */ cs_free (jmatch) ; /* --- Fine decomposition ----------------------------------------------- */ pinv = cs_pinv (p, m) ; /* pinv=p' */ if (!pinv) return (cs_ddone (D, NULL, NULL, 0)) ; C = cs_permute (A, pinv, q, 0) ;/* C=A(p,q) (it will hold A(R2,C2)) */ cs_free (pinv) ; if (!C) return (cs_ddone (D, NULL, NULL, 0)) ; Cp = C->p ; nc = cc [3] - cc [2] ; /* delete cols C0, C1, and C3 from C */ if (cc [2] > 0) for (j = cc [2] ; j <= cc [3] ; j++) Cp [j-cc[2]] = Cp [j] ; C->n = nc ; if (rr [2] - rr [1] < m) /* delete rows R0, R1, and R3 from C */ { cs_fkeep (C, cs_rprune, rr) ; cnz = Cp [nc] ; Ci = C->i ; if (rr [1] > 0) for (k = 0 ; k < cnz ; k++) Ci [k] -= rr [1] ; } C->m = nc ; scc = cs_scc (C) ; /* find strongly connected components of C*/ if (!scc) return (cs_ddone (D, C, NULL, 0)) ; /* --- Combine coarse and fine decompositions --------------------------- */ ps = scc->p ; /* C(ps,ps) is the permuted matrix */ rs = scc->r ; /* kth block is rs[k]..rs[k+1]-1 */ nb1 = scc->nb ; /* # of blocks of A(R2,C2) */ for (k = 0 ; k < nc ; k++) wj [k] = q [ps [k] + cc [2]] ; for (k = 0 ; k < nc ; k++) q [k + cc [2]] = wj [k] ; for (k = 0 ; k < nc ; k++) wi [k] = p [ps [k] + rr [1]] ; for (k = 0 ; k < nc ; k++) p [k + rr [1]] = wi [k] ; nb2 = 0 ; /* create the fine block partitions */ r [0] = s [0] = 0 ; if (cc [2] > 0) nb2++ ; /* leading coarse block A (R1, [C0 C1]) */ for (k = 0 ; k < nb1 ; k++) /* coarse block A (R2,C2) */ { r [nb2] = rs [k] + rr [1] ; /* A (R2,C2) splits into nb1 fine blocks */ s [nb2] = rs [k] + cc [2] ; nb2++ ; } if (rr [2] < m) { r [nb2] = rr [2] ; /* trailing coarse block A ([R3 R0], C3) */ s [nb2] = cc [3] ; nb2++ ; } r [nb2] = m ; s [nb2] = n ; D->nb = nb2 ; cs_dfree (scc) ; return (cs_ddone (D, C, NULL, 1)) ; }