//------------------------------------------------------------------------------ // GB_AxB_saxpy3_coarseGus_noM_phase5: numeric coarse Gustavson, no mask //------------------------------------------------------------------------------ // SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2023, All Rights Reserved. // SPDX-License-Identifier: Apache-2.0 //------------------------------------------------------------------------------ { for (int64_t kk = kfirst ; kk <= klast ; kk++) { //---------------------------------------------------------------------- // get C(:,j) and B(:,j) //---------------------------------------------------------------------- int64_t pC = Cp [kk] ; int64_t cjnz = Cp [kk+1] - pC ; if (cjnz == 0) continue ; // no work to do if C(:,j) empty GB_GET_B_j ; //---------------------------------------------------------------------- // special case when C (:,j) is dense //---------------------------------------------------------------------- #ifndef GB_GENERIC if (cjnz == cvlen) // C(:,j) is dense { // This is not used for the generic saxpy3. GB_COMPUTE_DENSE_C_j ; // C(:,j) = A*B(:,j) continue ; } #endif //---------------------------------------------------------------------- // C(:,j) = A*B(:,j) //---------------------------------------------------------------------- mark++ ; if (bjnz == 1 && (A_is_sparse || A_is_hyper)) { //------------------------------------------------------------------ // C(:,j) = A(:,k)*B(k,j) where B(:,j) has a single entry //------------------------------------------------------------------ GB_COMPUTE_C_j_WHEN_NNZ_B_j_IS_ONE ; } else if (16 * cjnz > cvlen) { //------------------------------------------------------------------ // C(:,j) is not very sparse //------------------------------------------------------------------ for ( ; pB < pB_end ; pB++) // scan B(:,j) { GB_GET_B_kj_INDEX ; // get index k of entry B(k,j) GB_GET_A_k ; // get A(:,k) if (aknz == 0) continue ; // skip if A(:,k) is empty GB_GET_B_kj ; // bkj = B(k,j) // scan A(:,k) for (int64_t pA = pA_start ; pA < pA_end ; pA++) { GB_GET_A_ik_INDEX ; // get index i of entry A(i,k) GB_MULT_A_ik_B_kj ; // t = A(i,k)*B(k,j) if (Hf [i] != mark) { // C(i,j) = A(i,k) * B(k,j) Hf [i] = mark ; GB_HX_WRITE (i, t) ; // Hx [i] = t } else { // C(i,j) += A(i,k) * B(k,j) GB_HX_UPDATE (i, t) ; // Hx [i] += t } } } GB_GATHER_ALL_C_j (mark) ; // gather into C(:,j) } else { //------------------------------------------------------------------ // C(:,j) is very sparse //------------------------------------------------------------------ for ( ; pB < pB_end ; pB++) // scan B(:,j) { GB_GET_B_kj_INDEX ; // get index k of entry B(k,j) GB_GET_A_k ; // get A(:,k) if (aknz == 0) continue ; // skip if A(:,k) is empty GB_GET_B_kj ; // bkj = B(k,j) // scan A(:,k) for (int64_t pA = pA_start ; pA < pA_end ; pA++) { GB_GET_A_ik_INDEX ; // get index i of entry A(i,k) GB_MULT_A_ik_B_kj ; // t = A(i,k)*B(k,j) if (Hf [i] != mark) { // C(i,j) = A(i,k) * B(k,j) Hf [i] = mark ; GB_HX_WRITE (i, t) ; // Hx [i] = t Ci [pC++] = i ; } else { // C(i,j) += A(i,k) * B(k,j) GB_HX_UPDATE (i, t) ; // Hx [i] += t } } } GB_SORT_AND_GATHER_C_j ; // gather into C(:,j) } } }