//------------------------------------------------------------------------------ // LAGraph_BF_full.c: Bellman-Ford single-source shortest paths, returns tree //------------------------------------------------------------------------------ // LAGraph, (c) 2019-2022 by The LAGraph Contributors, All Rights Reserved. // SPDX-License-Identifier: BSD-2-Clause // // For additional details (including references to third party source code and // other files) see the LICENSE file or contact permission@sei.cmu.edu. See // Contributors.txt for a full list of contributors. Created, in part, with // funding and support from the U.S. Government (see Acknowledgments.txt file). // DM22-0790 // Contributed by Jinhao Chen and Timothy A. Davis, Texas A&M University //------------------------------------------------------------------------------ // LAGraph_BF_full_mxv: Bellman-Ford single source shortest paths, returning // both the path lengths and the shortest-path tree. // LAGraph_BF_full_mxv performs a Bellman-Ford to find out shortest path // length, parent nodes along the path and the hops (number of edges) in the // path from given source vertex s in the range of [0, n) on graph with n nodes. // It works almost the same as LAGraph_BF_full except that it performs update // using GrB_mxv instead of GrB_vxm, therefore, it require the input matrix as // the transpose of adjacency matrix A with size n by n. That is, the input // sparse matrix has entry AT(i, j) if there is edge from vertex j to vertex i // with weight w, then AT(i, j) = w. While same as LAGraph_BF_full, it requires // AT(i, i) = 0 for all 0 <= i < n. // LAGraph_BF_full_mxv returns GrB_SUCCESS if it succeeds. In this case, there // are no negative-weight cycles in the graph, and d, pi, and h are returned. // The vector d has d(k) as the shortest distance from s to k. pi(k) = p+1, // where p is the parent node of k-th node in the shortest path. In particular, // pi(s) = 0. h(k) = hop(s, k), the number of edges from s to k in the shortest // path. // If the graph has a negative-weight cycle, GrB_NO_VALUE is returned, and the // GrB_Vectors d(k), pi(k) and h(k) (i.e., *pd_output, *ppi_output and // *ph_output respectively) will be NULL when negative-weight cycle detected. // Otherwise, other errors such as GrB_OUT_OF_MEMORY, GrB_INVALID_OBJECT, and // so on, can be returned, if these errors are found by the underlying // GrB_* functions. //------------------------------------------------------------------------------ #define LG_FREE_WORK \ { \ GrB_free(&d); \ GrB_free(&dtmp); \ GrB_free(&Atmp); \ GrB_free(&BF_Tuple3); \ GrB_free(&BF_lMIN_Tuple3); \ GrB_free(&BF_PLUSrhs_Tuple3); \ GrB_free(&BF_EQ_Tuple3); \ GrB_free(&BF_lMIN_Tuple3_Monoid); \ GrB_free(&BF_lMIN_PLUSrhs_Tuple3); \ LAGraph_Free ((void**)&I, NULL); \ LAGraph_Free ((void**)&J, NULL); \ LAGraph_Free ((void**)&w, NULL); \ LAGraph_Free ((void**)&W, NULL); \ LAGraph_Free ((void**)&h, NULL); \ LAGraph_Free ((void**)&pi, NULL); \ } #define LG_FREE_ALL \ { \ LG_FREE_WORK ; \ GrB_free (pd_output); \ GrB_free (ppi_output); \ GrB_free (ph_output); \ } #include #include #include // from src/utility typedef void (*LAGraph_binary_function) (void *, const void *, const void *) ; //------------------------------------------------------------------------------ // data type for each entry of the adjacent matrix A and "distance" vector d; // corresponds to nonexistence of a path, and // the value <0, 0, NULL> corresponds to a path from a vertex to itself //------------------------------------------------------------------------------ typedef struct { double w; // w corresponds to a path weight. GrB_Index h; // h corresponds to a path size or number of hops. GrB_Index pi;// pi corresponds to the penultimate vertex along a path. // vertex indexed as 1, 2, 3, ... , V, and pi = 0 (as nil) // for u=v, and pi = UINT64_MAX (as inf) for (u,v) not in E } BF_Tuple3_struct; //------------------------------------------------------------------------------ // binary functions, z=f(x,y), where Tuple3xTuple3 -> Tuple3 //------------------------------------------------------------------------------ void BF_lMIN_mxv ( BF_Tuple3_struct *z, const BF_Tuple3_struct *y, const BF_Tuple3_struct *x ) { if (x->w < y->w || (x->w == y->w && x->h < y->h) || (x->w == y->w && x->h == y->h && x->pi < y->pi)) { if (z != x) { *z = *x; } } else { *z = *y; } } void BF_PLUSrhs_mxv ( BF_Tuple3_struct *z, const BF_Tuple3_struct *y, const BF_Tuple3_struct *x ) { z->w = x->w + y->w; z->h = x->h + y->h; z->pi = (x->pi != UINT64_MAX && y->pi != 0) ? y->pi : x->pi ; } void BF_EQ_mxv ( bool *z, const BF_Tuple3_struct *y, const BF_Tuple3_struct *x ) { (*z) = (x->w == y->w && x->h == y->h && x->pi == y->pi) ; } // Given the transpose of a n-by-n adjacency matrix A and a source vertex s. // If there is no negative-weight cycle reachable from s, return the distances // of shortest paths from s and parents along the paths as vector d. Otherwise, // returns d=NULL if there is a negtive-weight cycle. // pd_output is pointer to a GrB_Vector, where the i-th entry is d(s,i), the // sum of edges length in the shortest path // ppi_output is pointer to a GrB_Vector, where the i-th entry is pi(i), the // parent of i-th vertex in the shortest path // ph_output is pointer to a GrB_Vector, where the i-th entry is h(s,i), the // number of edges from s to i in the shortest path // AT has zeros on diagonal and weights on corresponding entries of edges // s is given index for source vertex GrB_Info LAGraph_BF_full_mxv ( GrB_Vector *pd_output, //the pointer to the vector of distance GrB_Vector *ppi_output, //the pointer to the vector of parent GrB_Vector *ph_output, //the pointer to the vector of hops const GrB_Matrix AT, //matrix for the graph const GrB_Index s //given index of the source ) { GrB_Info info; char *msg = NULL ; // tmp vector to store distance vector after n (i.e., V) loops GrB_Vector d = NULL, dtmp = NULL; GrB_Matrix Atmp = NULL; GrB_Type BF_Tuple3; GrB_BinaryOp BF_lMIN_Tuple3; GrB_BinaryOp BF_PLUSrhs_Tuple3; GrB_BinaryOp BF_EQ_Tuple3; GrB_Monoid BF_lMIN_Tuple3_Monoid; GrB_Semiring BF_lMIN_PLUSrhs_Tuple3; GrB_Index nrows, ncols, n, nz; // n = # of row/col, nz = # of nnz in graph GrB_Index *I = NULL, *J = NULL; // for col/row indices of entries from AT GrB_Index *h = NULL, *pi = NULL; double *w = NULL; BF_Tuple3_struct *W = NULL; LG_ASSERT (AT != NULL && pd_output != NULL && ppi_output != NULL && ph_output != NULL, GrB_NULL_POINTER) ; *pd_output = NULL; *ppi_output = NULL; *ph_output = NULL; GRB_TRY (GrB_Matrix_nrows (&nrows, AT)) ; GRB_TRY (GrB_Matrix_ncols (&ncols, AT)) ; GRB_TRY (GrB_Matrix_nvals (&nz, AT)); LG_ASSERT_MSG (nrows == ncols, -1002, "A must be square") ; n = nrows; LG_ASSERT_MSG (s < n, GrB_INVALID_INDEX, "invalid source node") ; //-------------------------------------------------------------------------- // create all GrB_Type GrB_BinaryOp GrB_Monoid and GrB_Semiring //-------------------------------------------------------------------------- // GrB_Type GRB_TRY (GrB_Type_new(&BF_Tuple3, sizeof(BF_Tuple3_struct))); // GrB_BinaryOp GRB_TRY (GrB_BinaryOp_new(&BF_EQ_Tuple3, (LAGraph_binary_function) (&BF_EQ_mxv), GrB_BOOL, BF_Tuple3, BF_Tuple3)); GRB_TRY (GrB_BinaryOp_new(&BF_lMIN_Tuple3, (LAGraph_binary_function) (&BF_lMIN_mxv), BF_Tuple3, BF_Tuple3, BF_Tuple3)); GRB_TRY (GrB_BinaryOp_new(&BF_PLUSrhs_Tuple3, (LAGraph_binary_function)(&BF_PLUSrhs_mxv), BF_Tuple3, BF_Tuple3, BF_Tuple3)); // GrB_Monoid BF_Tuple3_struct BF_identity = (BF_Tuple3_struct) { .w = INFINITY, .h = UINT64_MAX, .pi = UINT64_MAX }; GRB_TRY (GrB_Monoid_new_UDT(&BF_lMIN_Tuple3_Monoid, BF_lMIN_Tuple3, &BF_identity)); //GrB_Semiring GRB_TRY (GrB_Semiring_new(&BF_lMIN_PLUSrhs_Tuple3, BF_lMIN_Tuple3_Monoid, BF_PLUSrhs_Tuple3)); //-------------------------------------------------------------------------- // allocate arrays used for tuplets //-------------------------------------------------------------------------- LAGRAPH_TRY (LAGraph_Malloc ((void **) &I, nz, sizeof(GrB_Index), msg)) ; LAGRAPH_TRY (LAGraph_Malloc ((void **) &J, nz, sizeof(GrB_Index), msg)) ; LAGRAPH_TRY (LAGraph_Malloc ((void **) &w, nz, sizeof(double), msg)) ; LAGRAPH_TRY (LAGraph_Malloc ((void **) &W, nz, sizeof(BF_Tuple3_struct), msg)) ; //-------------------------------------------------------------------------- // create matrix Atmp based on AT, while its entries become BF_Tuple3 type //-------------------------------------------------------------------------- GRB_TRY (GrB_Matrix_extractTuples_FP64(I, J, w, &nz, AT)); for (GrB_Index k = 0; k < nz; k++) { if (w[k] == 0) //diagonal entries { W[k] = (BF_Tuple3_struct) { .w = 0, .h = 0, .pi = 0 }; } else { // w(i, j) is the weight of edge from j to i, so the parent here // should be j W[k] = (BF_Tuple3_struct) { .w = w[k], .h = 1, .pi = J[k] + 1 }; } } GRB_TRY (GrB_Matrix_new(&Atmp, BF_Tuple3, n, n)); GRB_TRY (GrB_Matrix_build_UDT(Atmp, I, J, W, nz, BF_lMIN_Tuple3)); LAGraph_Free ((void**)&I, NULL); LAGraph_Free ((void**)&J, NULL); LAGraph_Free ((void**)&W, NULL); LAGraph_Free ((void**)&w, NULL); //-------------------------------------------------------------------------- // create and initialize "distance" vector d //-------------------------------------------------------------------------- GRB_TRY (GrB_Vector_new(&d, BF_Tuple3, n)); // initial distance from s to itself BF_Tuple3_struct d0 = (BF_Tuple3_struct) { .w = 0, .h = 0, .pi = 0 }; GRB_TRY (GrB_Vector_setElement_UDT(d, &d0, s)); //-------------------------------------------------------------------------- // start the Bellman Ford process //-------------------------------------------------------------------------- // copy d to dtmp in order to create a same size of vector GRB_TRY (GrB_Vector_dup(&dtmp, d)); bool same= false; // variable indicating if d == dtmp int64_t iter = 0; // number of iterations // terminate when no new path is found or more than V-1 loops while (!same && iter < n - 1) { // execute semiring on d and AT, and save the result to dtmp GRB_TRY (GrB_mxv(dtmp, GrB_NULL, GrB_NULL, BF_lMIN_PLUSrhs_Tuple3, Atmp, d, GrB_NULL)); LG_TRY (LAGraph_Vector_IsEqualOp (&same, dtmp, d, BF_EQ_Tuple3, NULL)); if (!same) { GrB_Vector ttmp = dtmp; dtmp = d; d = ttmp; } iter ++; } // check for negative-weight cycle only when there was a new path in the // last loop, otherwise, there can't be a negative-weight cycle. if (!same) { // execute semiring again to check for negative-weight cycle GRB_TRY (GrB_mxv(dtmp, GrB_NULL, GrB_NULL, BF_lMIN_PLUSrhs_Tuple3, Atmp, d, GrB_NULL)); LG_TRY (LAGraph_Vector_IsEqualOp (&same, dtmp, d, BF_EQ_Tuple3, NULL)); // if d != dtmp, then there is a negative-weight cycle in the graph if (!same) { // printf("A negative-weight cycle found. \n"); LG_FREE_ALL; return (GrB_NO_VALUE) ; } } //-------------------------------------------------------------------------- // extract tuple from "distance" vector d and create GrB_Vectors for output //-------------------------------------------------------------------------- LAGRAPH_TRY (LAGraph_Malloc ((void **) &I, n, sizeof(GrB_Index), msg)) ; LAGRAPH_TRY (LAGraph_Malloc ((void **) &W, n, sizeof(BF_Tuple3_struct), msg)) ; LAGRAPH_TRY (LAGraph_Malloc ((void **) &w, n, sizeof(double), msg)) ; LAGRAPH_TRY (LAGraph_Malloc ((void **) &h, n, sizeof(GrB_Index), msg)) ; LAGRAPH_TRY (LAGraph_Malloc ((void **) &pi, n, sizeof(GrB_Index), msg)) ; nz = n ; GRB_TRY (GrB_Vector_extractTuples_UDT (I, (void *) W, &nz, d)); for (GrB_Index k = 0; k < n; k++) { w [k] = W[k].w ; h [k] = W[k].h ; pi[k] = W[k].pi; } GRB_TRY (GrB_Vector_new(pd_output, GrB_FP64, n)); GRB_TRY (GrB_Vector_new(ppi_output, GrB_UINT64, n)); GRB_TRY (GrB_Vector_new(ph_output, GrB_UINT64, n)); GRB_TRY (GrB_Vector_build (*pd_output , I, w , nz, GrB_MIN_FP64 )); GRB_TRY (GrB_Vector_build (*ppi_output, I, pi, nz, GrB_MIN_UINT64)); GRB_TRY (GrB_Vector_build (*ph_output , I, h , nz, GrB_MIN_UINT64)); LG_FREE_WORK; return (GrB_SUCCESS) ; }