%%MatrixMarket matrix coordinate integer general %------------------------------------------------------------------------------- % UF Sparse Matrix Collection, Tim Davis % http://www.cise.ufl.edu/research/sparse/matrices/JGD_Kocay/Trec4 % name: JGD_Kocay/Trec4 % [Brute force disjoint product matrices in tree algebra on n nodes, Nicolas Thiery] % id: 2138 % date: 2008 % author: N. Thiery % ed: J.-G. Dumas % fields: name title A id date author ed kind notes % kind: combinatorial problem %------------------------------------------------------------------------------- % notes: % Brute force disjoint product matrices in tree algebra on n nodes, Nicolas Thiery % From Jean-Guillaume Dumas' Sparse Integer Matrix Collection, % http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/simc.html % % http://www.lapcs.univ-lyon1.fr/~nthiery/LinearAlgebra % % Linear algebra for combinatorics % % Abstract: Computations in algebraic combinatorics often boils down to % sparse linear algebra over some exact field. Such computations are % usually done in high level computer algebra systems like MuPAD or % Maple, which are reasonnably efficient when the ground field requires % symbolic computations. However, when the ground field is, say Q or % Z/pZ, the use of external specialized libraries becomes necessary. This % document, geared toward developpers of such libraries, present a brief % overview of my needs, which seems to be fairly typical in the % community. % % Filename in JGD collection: Kocay/Trec4.txt2 %------------------------------------------------------------------------------- 2 3 3 1 2 3 2 2 2 2 3 1