// ============================================================================= // === spqr_1colamd ============================================================ // ============================================================================= // SPQR, Copyright (c) 2008-2022, Timothy A Davis. All Rights Reserved. // SPDX-License-Identifier: GPL-2.0+ //------------------------------------------------------------------------------ // Find column singletons, with column permutations allowed. After column // singletons are found (and ordered first in Q1fill), the remaining columns // are optionally permuted via COLAMD or CHOLMOD's internal ordering method(s). // This function handles the natural, COLAMD, and CHOLMOD ordering options // (not the fixed ordering option). // // Returns a sparse matrix Y with column pointers allocated and initialized, // but no values. Y has n-n1cols+bncols columns, and m-n1rows rows. B is // empty and no singletons are found, Y is NULL. #include "spqr.hpp" template int spqr_1colamd // TRUE if OK, FALSE otherwise ( // inputs, not modified int ordering, // all available, except 0:fixed and 3:given // treated as 1:natural double tol, // only accept singletons above tol Int bncols, // number of columns of B cholmod_sparse *A, // m-by-n sparse matrix // outputs, neither allocated nor defined on input Int **p_Q1fill, // size n+bncols, fill-reducing // or natural ordering Int **p_R1p, // size n1rows+1, R1p [k] = # of nonzeros in kth // row of R1. NULL if n1cols == 0. Int **p_P1inv, // size m, singleton row inverse permutation. // If row i of A is the kth singleton row, then // P1inv [i] = k. NULL if n1cols is zero. cholmod_sparse **p_Y, // on output, only the first n-n1cols+1 entries of // Y->p are defined (if Y is not NULL), where // Y = [A B] or Y = [A2 B2]. If B is empty and // there are no column singletons, Y is NULL Int *p_n1cols, // number of column singletons found Int *p_n1rows, // number of corresponding rows found // workspace and parameters cholmod_common *cc ) { Int *Q1fill, *Degree, *Qrows, *W, *Winv, *ATp, *ATj, *R1p, *P1inv, *Yp, *Ap, *Ai, *Work ; Entry *Ax ; Int p, d, j, i, k, n1cols, n1rows, row, pend, n2rows, n2cols = EMPTY, nz2, kk, p2, col2, ynz, fill_reducing_ordering, m, n, xtype, worksize ; cholmod_sparse *AT, *Y ; // ------------------------------------------------------------------------- // get inputs // ------------------------------------------------------------------------- xtype = spqr_type ( ) ; m = A->nrow ; n = A->ncol ; Ap = (Int *) A->p ; Ai = (Int *) A->i ; Ax = (Entry *) A->x ; // set outputs to NULL in case of early return *p_Q1fill = NULL ; *p_R1p = NULL ; *p_P1inv = NULL ; *p_Y = NULL ; *p_n1cols = EMPTY ; *p_n1rows = EMPTY ; // ------------------------------------------------------------------------- // allocate result Q1fill (Y, R1p, P1inv allocated later) // ------------------------------------------------------------------------- Q1fill = (Int *) spqr_malloc (n+bncols, sizeof (Int), cc) ; // ------------------------------------------------------------------------- // allocate workspace // ------------------------------------------------------------------------- fill_reducing_ordering = ! ((ordering == SPQR_ORDERING_FIXED) || (ordering == SPQR_ORDERING_GIVEN) || (ordering == SPQR_ORDERING_NATURAL)) ; worksize = ((fill_reducing_ordering) ? 3:2) * n ; Work = (Int *) spqr_malloc (worksize, sizeof (Int), cc) ; Degree = Work ; // size n Qrows = Work + n ; // size n Winv = Qrows ; // Winv and Qrows not needed at the same time W = Qrows + n ; // size n if fill-reducing ordering, else size 0 if (cc->status < CHOLMOD_OK) { // out of memory; free everything and return spqr_free (worksize, sizeof (Int), Work, cc) ; spqr_free (n+bncols, sizeof (Int), Q1fill, cc) ; return (FALSE) ; } // ------------------------------------------------------------------------- // initialze queue with empty columns, and columns with just one entry // ------------------------------------------------------------------------- n1cols = 0 ; n1rows = 0 ; for (j = 0 ; j < n ; j++) { p = Ap [j] ; d = Ap [j+1] - p ; if (d == 0) { // j is a dead column singleton PR (("initial dead %ld\n", j)) ; Q1fill [n1cols] = j ; Qrows [n1cols] = EMPTY ; n1cols++ ; Degree [j] = EMPTY ; } else if (d == 1 && spqr_abs (Ax [p]) > tol) { // j is a column singleton, live or dead PR (("initial live %ld %ld\n", j, Ai [p])) ; Q1fill [n1cols] = j ; Qrows [n1cols] = Ai [p] ; // this might be a duplicate n1cols++ ; Degree [j] = EMPTY ; } else { // j has degree > 1, it is not (yet) a singleton Degree [j] = d ; } } // Degree [j] = EMPTY if j is in the singleton queue, or the Degree [j] > 1 // is the degree of column j otherwise // ------------------------------------------------------------------------- // create AT = spones (A') // ------------------------------------------------------------------------- AT = spqr_transpose (A, 0, cc) ; // [ if (cc->status < CHOLMOD_OK) { // out of memory; free everything and return spqr_free (worksize, sizeof (Int), Work, cc) ; spqr_free (n+bncols, sizeof (Int), Q1fill, cc) ; return (FALSE) ; } ATp = (Int *) AT->p ; ATj = (Int *) AT->i ; // ------------------------------------------------------------------------- // remove column singletons via breadth-first-search // ------------------------------------------------------------------------- for (k = 0 ; k < n1cols ; k++) { // --------------------------------------------------------------------- // get a new singleton from the queue // --------------------------------------------------------------------- // Int col = Q1fill [k] ; unused variable, for debugging #define col (Q1fill [k]) row = Qrows [k] ; PR (("\n---- singleton col %ld row %ld\n", col, row)) ; ASSERT (Degree [col] == EMPTY) ; if (row == EMPTY || ATp [row] < 0) { // ----------------------------------------------------------------- // col is a dead column singleton; remove duplicate row index // ----------------------------------------------------------------- Qrows [k] = EMPTY ; row = EMPTY ; PR (("dead: %ld\n", col)) ; } else { // ----------------------------------------------------------------- // col is a live col singleton; remove its row from matrix // ----------------------------------------------------------------- n1rows++ ; p = ATp [row] ; ATp [row] = FLIP (p) ; // flag the singleton row pend = UNFLIP (ATp [row+1]) ; PR (("live: %ld row %ld\n", col, row)) ; for ( ; p < pend ; p++) { // look for new column singletons after row is removed j = ATj [p] ; d = Degree [j] ; if (d == EMPTY) { // j is already in the singleton queue continue ; } ASSERT (d >= 1) ; ASSERT2 (spqrDebug_listcount (j, Q1fill, n1cols, 0, cc) == 0) ; d-- ; Degree [j] = d ; if (d == 0) { // a new dead col singleton PR (("newly dead %ld\n", j)) ; Q1fill [n1cols] = j ; Qrows [n1cols] = EMPTY ; n1cols++ ; Degree [j] = EMPTY ; } else if (d == 1) { // a new live col singleton; find its single live row for (p2 = Ap [j] ; p2 < Ap [j+1] ; p2++) { i = Ai [p2] ; if (ATp [i] >= 0 && spqr_abs (Ax [p2]) > tol) { // i might appear in Qrows [k+1:n1cols-1] PR (("newly live %ld\n", j)) ; ASSERT2 (spqrDebug_listcount (i,Qrows,k+1,1,cc)==0); Q1fill [n1cols] = j ; Qrows [n1cols] = i ; n1cols++ ; Degree [j] = EMPTY ; break ; } } } } } // Q1fill [0:k] and Qrows [0:k] have no duplicates ASSERT2 (spqrDebug_listcount (col, Q1fill, n1cols, 0, cc) == 1) ; ASSERT2 (IMPLIES (row >= 0, spqrDebug_listcount (row, Qrows, k+1, 1, cc) == 1)) ; // used for debugging only #undef col } // ------------------------------------------------------------------------- // Degree flags the column singletons, ATp flags their rows // ------------------------------------------------------------------------- #ifndef NDEBUG k = 0 ; for (j = 0 ; j < n ; j++) { PR (("j %ld Degree[j] %ld\n", j, Degree [j])) ; if (Degree [j] > 0) k++ ; // j is not a column singleton } PR (("k %ld n %ld n1cols %ld\n", k, n, n1cols)) ; ASSERT (k == n - n1cols) ; for (k = 0 ; k < n1cols ; k++) { Int col = Q1fill [k] ; ASSERT (Degree [col] <= 0) ; } k = 0 ; for (i = 0 ; i < m ; i++) { if (ATp [i] >= 0) k++ ; // i is not a row of a col singleton } ASSERT (k == m - n1rows) ; for (k = 0 ; k < n1cols ; k++) { row = Qrows [k] ; ASSERT (IMPLIES (row != EMPTY, ATp [row] < 0)) ; } #endif // ------------------------------------------------------------------------- // find the row ordering // ------------------------------------------------------------------------- if (n1cols == 0) { // --------------------------------------------------------------------- // no singletons in the matrix; no R1 matrix, no P1inv permutation // --------------------------------------------------------------------- ASSERT (n1rows == 0) ; R1p = NULL ; P1inv = NULL ; } else { // --------------------------------------------------------------------- // construct the row singleton permutation // --------------------------------------------------------------------- // allocate result arrays R1p and P1inv R1p = (Int *) spqr_malloc (n1rows+1, sizeof (Int), cc) ; P1inv = (Int *) spqr_malloc (m, sizeof (Int), cc) ; if (cc->status < CHOLMOD_OK) { // out of memory; free everything and return spqr_free_sparse (&AT, cc) ; spqr_free (worksize, sizeof (Int), Work, cc) ; spqr_free (n+bncols, sizeof (Int), Q1fill, cc) ; spqr_free (n1rows+1, sizeof (Int), R1p, cc) ; spqr_free (m, sizeof (Int), P1inv, cc) ; return (FALSE) ; } #ifndef NDEBUG for (i = 0 ; i < m ; i++) P1inv [i] = EMPTY ; #endif kk = 0 ; for (k = 0 ; k < n1cols ; k++) { i = Qrows [k] ; PR (("singleton col %ld row %ld\n", Q1fill [k], i)) ; if (i != EMPTY) { // row i is the kk-th singleton row ASSERT (ATp [i] < 0) ; ASSERT (P1inv [i] == EMPTY) ; P1inv [i] = kk ; // also find # of entries in row kk of R1 R1p [kk] = UNFLIP (ATp [i+1]) - UNFLIP (ATp [i]) ; kk++ ; } } ASSERT (kk == n1rows) ; for (i = 0 ; i < m ; i++) { if (ATp [i] >= 0) { // row i is not a singleton row ASSERT (P1inv [i] == EMPTY) ; P1inv [i] = kk ; kk++ ; } } ASSERT (kk == m) ; } // Qrows is no longer needed. // ------------------------------------------------------------------------- // complete the column ordering // ------------------------------------------------------------------------- if (!fill_reducing_ordering) { // --------------------------------------------------------------------- // natural ordering // --------------------------------------------------------------------- if (n1cols == 0) { // no singletons, so natural ordering is 0:n-1 for now for (k = 0 ; k < n ; k++) { Q1fill [k] = k ; } } else { // singleton columns appear first, then non column singletons k = n1cols ; for (j = 0 ; j < n ; j++) { if (Degree [j] > 0) { // column j is not a column singleton Q1fill [k++] = j ; } } ASSERT (k == n) ; } } else { // --------------------------------------------------------------------- // fill-reducing ordering of pruned submatrix // --------------------------------------------------------------------- if (n1cols == 0) { // ----------------------------------------------------------------- // no singletons found; do fill-reducing on entire matrix // ----------------------------------------------------------------- n2cols = n ; n2rows = m ; } else { // ----------------------------------------------------------------- // create the pruned matrix for fill-reducing by removing singletons // ----------------------------------------------------------------- // find the mapping of original columns to pruned columns n2cols = 0 ; for (j = 0 ; j < n ; j++) { if (Degree [j] > 0) { // column j is not a column singleton W [j] = n2cols++ ; PR (("W [%ld] = %ld\n", j, W [j])) ; } else { // column j is a column singleton W [j] = EMPTY ; PR (("W [%ld] = %ld (j is col singleton)\n", j, W [j])) ; } } ASSERT (n2cols == n - n1cols) ; // W is now a mapping of the original columns to the columns in the // pruned matrix. W [col] == EMPTY if col is a column singleton. // Otherwise col2 = W [j] is a column of the pruned matrix. // ----------------------------------------------------------------- // delete row and column singletons from A' // ----------------------------------------------------------------- // compact A' by removing row and column singletons nz2 = 0 ; n2rows = 0 ; for (i = 0 ; i < m ; i++) { p = ATp [i] ; if (p >= 0) { // row i is not a row of a column singleton ATp [n2rows++] = nz2 ; pend = UNFLIP (ATp [i+1]) ; for (p = ATp [i] ; p < pend ; p++) { j = ATj [p] ; ASSERT (W [j] >= 0 && W [j] < n-n1cols) ; ATj [nz2++] = W [j] ; } } } ATp [n2rows] = nz2 ; ASSERT (n2rows == m - n1rows) ; } // --------------------------------------------------------------------- // fill-reducing ordering of the transpose of the pruned A' matrix // --------------------------------------------------------------------- PR (("n1cols %ld n1rows %ld n2cols %ld n2rows %ld\n", n1cols, n1rows, n2cols, n2rows)) ; ASSERT ((Int) AT->nrow == n) ; ASSERT ((Int) AT->ncol == m) ; AT->nrow = n2cols ; AT->ncol = n2rows ; // save the current CHOLMOD settings Int save [6] ; save [0] = cc->supernodal ; save [1] = cc->nmethods ; save [2] = cc->postorder ; save [3] = cc->method [0].ordering ; save [4] = cc->method [1].ordering ; save [5] = cc->method [2].ordering ; // follow the ordering with a postordering of the column etree cc->postorder = TRUE ; // 8:best: best of COLAMD(A), AMD(A'A), and METIS (if available) if (ordering == SPQR_ORDERING_BEST) { ordering = SPQR_ORDERING_CHOLMOD ; cc->nmethods = 3 ; cc->method [0].ordering = CHOLMOD_COLAMD ; cc->method [1].ordering = CHOLMOD_AMD ; cc->method [2].ordering = CHOLMOD_METIS ; } // 9:bestamd: best of COLAMD(A) and AMD(A'A) if (ordering == SPQR_ORDERING_BESTAMD) { // if METIS is not installed, this option is the same as 8:best ordering = SPQR_ORDERING_CHOLMOD ; cc->nmethods = 2 ; cc->method [0].ordering = CHOLMOD_COLAMD ; cc->method [1].ordering = CHOLMOD_AMD ; } if (ordering == SPQR_ORDERING_DEFAULT) { // Version 1.2.0: just use COLAMD ordering = SPQR_ORDERING_COLAMD ; } if (ordering == SPQR_ORDERING_AMD) { // use CHOLMOD's interface to AMD to order A'*A spqr_amd (AT, NULL, 0, (Int *) (Q1fill + n1cols), cc) ; } else if (ordering == SPQR_ORDERING_METIS) { // use CHOLMOD's interface to METIS to order A'*A (if installed) TEST_COVERAGE_PAUSE ; #ifndef NPARTITION spqr_metis (AT, NULL, 0, TRUE, (Int *) (Q1fill + n1cols), cc) ; #else cc->status = CHOLMOD_NOT_INSTALLED ; #endif TEST_COVERAGE_RESUME ; } else if (ordering == SPQR_ORDERING_CHOLMOD) { // use CHOLMOD's internal ordering (defined by cc) to order AT PR (("Using CHOLMOD, nmethods %d\n", cc->nmethods)) ; cc->supernodal = CHOLMOD_SIMPLICIAL ; cc->postorder = TRUE ; cholmod_factor *Sc ; TEST_COVERAGE_PAUSE ; Sc = spqr_analyze_p2 (FALSE, AT, NULL, NULL, 0, cc) ; TEST_COVERAGE_RESUME ; if (Sc != NULL) { // copy perm from Sc->Perm [0:n2cols-1] to Q1fill (n1cols:n) Int *Sc_perm = (Int *) Sc->Perm ; for (k = 0 ; k < n2cols ; k++) { Q1fill [k + n1cols] = Sc_perm [k] ; } // CHOLMOD selected an ordering; determine the ordering used switch (Sc->ordering) { case CHOLMOD_AMD: ordering = SPQR_ORDERING_AMD ;break; case CHOLMOD_COLAMD: ordering = SPQR_ORDERING_COLAMD ;break; case CHOLMOD_METIS: ordering = SPQR_ORDERING_METIS ;break; } } spqr_free_factor (&Sc, cc) ; PR (("CHOLMOD used method %d : ordering: %d\n", cc->selected, cc->method [cc->selected].ordering)) ; } else // SPQR_ORDERING_DEFAULT or SPQR_ORDERING_COLAMD { // use CHOLMOD's interface to COLAMD to order AT ordering = SPQR_ORDERING_COLAMD ; spqr_colamd (AT, NULL, 0, TRUE, (Int *) (Q1fill + n1cols), cc) ; } cc->SPQR_istat [7] = ordering ; // restore the CHOLMOD settings cc->supernodal = save [0] ; cc->nmethods = save [1] ; cc->postorder = save [2] ; cc->method [0].ordering = save [3] ; cc->method [1].ordering = save [4] ; cc->method [2].ordering = save [5] ; AT->nrow = n ; AT->ncol = m ; } // ------------------------------------------------------------------------- // free AT // ------------------------------------------------------------------------- spqr_free_sparse (&AT, cc) ; // ] // ------------------------------------------------------------------------- // check if the method succeeded // ------------------------------------------------------------------------- if (cc->status < CHOLMOD_OK) { // out of memory; free everything and return spqr_free (worksize, sizeof (Int), Work, cc) ; spqr_free (n+bncols, sizeof (Int), Q1fill, cc) ; spqr_free (n1rows+1, sizeof (Int), R1p, cc) ; spqr_free (m, sizeof (Int), P1inv, cc) ; return (FALSE) ; } // ------------------------------------------------------------------------- // map the fill-reducing ordering ordering back to A // ------------------------------------------------------------------------- if (n1cols > 0 && fill_reducing_ordering) { // Winv is workspace of size n2cols <= n #ifndef NDEBUG for (j = 0 ; j < n2cols ; j++) Winv [j] = EMPTY ; #endif for (j = 0 ; j < n ; j++) { // j is a column of A. col2 = W [j] is either EMPTY, or it is // the corresponding column of the pruned matrix col2 = W [j] ; if (col2 != EMPTY) { ASSERT (col2 >= 0 && col2 < n2cols) ; Winv [col2] = j ; } } for (k = n1cols ; k < n ; k++) { // col2 is a column of the pruned matrix col2 = Q1fill [k] ; // j is the corresonding column of the A matrix j = Winv [col2] ; ASSERT (j >= 0 && j < n) ; Q1fill [k] = j ; } } // ------------------------------------------------------------------------- // identity permutation of the columns of B // ------------------------------------------------------------------------- for (k = n ; k < n+bncols ; k++) { // tack on the identity permutation for columns of B Q1fill [k] = k ; } // ------------------------------------------------------------------------- // find column pointers for Y = [A2 B2]; columns of A2 // ------------------------------------------------------------------------- if (n1cols == 0 && bncols == 0) { // A will be factorized instead of Y Y = NULL ; } else { // Y has no entries yet; nnz(Y) will be determined later Y = spqr_allocate_sparse (m-n1rows, n-n1cols+bncols, 0, FALSE, TRUE, 0, xtype, cc) ; if (cc->status < CHOLMOD_OK) { // out of memory; free everything and return spqr_free (worksize, sizeof (Int), Work, cc) ; spqr_free (n+bncols, sizeof (Int), Q1fill, cc) ; spqr_free (n1rows+1, sizeof (Int), R1p, cc) ; spqr_free (m, sizeof (Int), P1inv, cc) ; return (FALSE) ; } Yp = (Int *) Y->p ; ynz = 0 ; PR (("1c wrapup: n1cols %ld n %ld\n", n1cols, n)) ; for (k = n1cols ; k < n ; k++) { j = Q1fill [k] ; d = Degree [j] ; ASSERT (d >= 1 && d <= m) ; Yp [k-n1cols] = ynz ; ynz += d ; } Yp [n-n1cols] = ynz ; } // ------------------------------------------------------------------------- // free workspace and return results // ------------------------------------------------------------------------- spqr_free (worksize, sizeof (Int), Work, cc) ; *p_Q1fill = Q1fill ; *p_R1p = R1p ; *p_P1inv = P1inv ; *p_Y = Y ; *p_n1cols = n1cols ; *p_n1rows = n1rows ; return (TRUE) ; } template int spqr_1colamd // TRUE if OK, FALSE otherwise ( // inputs, not modified int ordering, // all available, except 0:fixed and 3:given // treated as 1:natural double tol, // only accept singletons above tol int32_t bncols, // number of columns of B cholmod_sparse *A, // m-by-n sparse matrix // outputs, neither allocated nor defined on input int32_t **p_Q1fill, // size n+bncols, fill-reducing // or natural ordering int32_t **p_R1p, // size n1rows+1, R1p [k] = # of nonzeros in kth // row of R1. NULL if n1cols == 0. int32_t **p_P1inv, // size m, singleton row inverse permutation. // If row i of A is the kth singleton row, then // P1inv [i] = k. NULL if n1cols is zero. cholmod_sparse **p_Y, // on output, only the first n-n1cols+1 entries of // Y->p are defined (if Y is not NULL), where // Y = [A B] or Y = [A2 B2]. If B is empty and // there are no column singletons, Y is NULL int32_t *p_n1cols, // number of column singletons found int32_t *p_n1rows, // number of corresponding rows found // workspace and parameters cholmod_common *cc ) ; template int spqr_1colamd // TRUE if OK, FALSE otherwise ( // inputs, not modified int ordering, // all available, except 0:fixed and 3:given // treated as 1:natural double tol, // only accept singletons above tol int32_t bncols, // number of columns of B cholmod_sparse *A, // m-by-n sparse matrix // outputs, neither allocated nor defined on input int32_t **p_Q1fill, // size n+bncols, fill-reducing // or natural ordering int32_t **p_R1p, // size n1rows+1, R1p [k] = # of nonzeros in kth // row of R1. NULL if n1cols == 0. int32_t **p_P1inv, // size m, singleton row inverse permutation. // If row i of A is the kth singleton row, then // P1inv [i] = k. NULL if n1cols is zero. cholmod_sparse **p_Y, // on output, only the first n-n1cols+1 entries of // Y->p are defined (if Y is not NULL), where // Y = [A B] or Y = [A2 B2]. If B is empty and // there are no column singletons, Y is NULL int32_t *p_n1cols, // number of column singletons found int32_t *p_n1rows, // number of corresponding rows found // workspace and parameters cholmod_common *cc ) ; template int spqr_1colamd // TRUE if OK, FALSE otherwise ( // inputs, not modified int ordering, // all available, except 0:fixed and 3:given // treated as 1:natural double tol, // only accept singletons above tol int64_t bncols, // number of columns of B cholmod_sparse *A, // m-by-n sparse matrix // outputs, neither allocated nor defined on input int64_t **p_Q1fill, // size n+bncols, fill-reducing // or natural ordering int64_t **p_R1p, // size n1rows+1, R1p [k] = # of nonzeros in kth // row of R1. NULL if n1cols == 0. int64_t **p_P1inv, // size m, singleton row inverse permutation. // If row i of A is the kth singleton row, then // P1inv [i] = k. NULL if n1cols is zero. cholmod_sparse **p_Y, // on output, only the first n-n1cols+1 entries of // Y->p are defined (if Y is not NULL), where // Y = [A B] or Y = [A2 B2]. If B is empty and // there are no column singletons, Y is NULL int64_t *p_n1cols, // number of column singletons found int64_t *p_n1rows, // number of corresponding rows found // workspace and parameters cholmod_common *cc ) ; template int spqr_1colamd // TRUE if OK, FALSE otherwise ( // inputs, not modified int ordering, // all available, except 0:fixed and 3:given // treated as 1:natural double tol, // only accept singletons above tol int64_t bncols, // number of columns of B cholmod_sparse *A, // m-by-n sparse matrix // outputs, neither allocated nor defined on input int64_t **p_Q1fill, // size n+bncols, fill-reducing // or natural ordering int64_t **p_R1p, // size n1rows+1, R1p [k] = # of nonzeros in kth // row of R1. NULL if n1cols == 0. int64_t **p_P1inv, // size m, singleton row inverse permutation. // If row i of A is the kth singleton row, then // P1inv [i] = k. NULL if n1cols is zero. cholmod_sparse **p_Y, // on output, only the first n-n1cols+1 entries of // Y->p are defined (if Y is not NULL), where // Y = [A B] or Y = [A2 B2]. If B is empty and // there are no column singletons, Y is NULL int64_t *p_n1cols, // number of column singletons found int64_t *p_n1rows, // number of corresponding rows found // workspace and parameters cholmod_common *cc ) ;