//------------------------------------------------------------------------------ // UMFPACK/Source/umf_create_element: create element after factorizing a front //------------------------------------------------------------------------------ // UMFPACK, Copyright (c) 2005-2023, Timothy A. Davis, All Rights Reserved. // SPDX-License-Identifier: GPL-2.0+ //------------------------------------------------------------------------------ /* Factorization of a frontal matrix is complete. Create a new element for later assembly into a subsequent frontal matrix. Returns TRUE if successful, FALSE if out of memory. */ #include "umf_internal.h" #include "umf_create_element.h" #include "umf_mem_alloc_element.h" #include "umf_mem_alloc_tail_block.h" #include "umf_mem_free_tail_block.h" #include "umf_get_memory.h" /* ========================================================================== */ /* === copy_column ========================================================== */ /* ========================================================================== */ PRIVATE void copy_column (Int len, Entry *X, Entry *Y) { Int i ; UMFPACK_IVDEP for (i = 0 ; i < len ; i++) { Y [i] = X [i] ; } } /* ========================================================================== */ /* === UMF_create_element =================================================== */ /* ========================================================================== */ Int UMF_create_element ( NumericType *Numeric, WorkType *Work, SymbolicType *Symbolic ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Int j, col, row, *Fcols, *Frows, fnrows, fncols, *Cols, len, needunits, t1, t2, size, e, i, *E, *Fcpos, *Frpos, *Rows, eloc, fnr_curr, f, got_memory, *Row_tuples, *Row_degree, *Row_tlen, *Col_tuples, max_mark, *Col_degree, *Col_tlen, nn, n_row, n_col, r2, c2, do_Fcpos ; Entry *C, *Fcol ; Element *ep ; Unit *p, *Memory ; Tuple *tp, *tp1, *tp2, tuple, *tpend ; #ifndef NDEBUG DEBUG2 (("FRONTAL WRAPUP\n")) ; UMF_dump_current_front (Numeric, Work, TRUE) ; #endif /* ---------------------------------------------------------------------- */ /* get parameters */ /* ---------------------------------------------------------------------- */ ASSERT (Work->fnpiv == 0) ; ASSERT (Work->fnzeros == 0) ; Row_degree = Numeric->Rperm ; Row_tuples = Numeric->Uip ; Row_tlen = Numeric->Uilen ; Col_degree = Numeric->Cperm ; Col_tuples = Numeric->Lip ; Col_tlen = Numeric->Lilen ; n_row = Work->n_row ; n_col = Work->n_col ; nn = MAX (n_row, n_col) ; Fcols = Work->Fcols ; Frows = Work->Frows ; Fcpos = Work->Fcpos ; Frpos = Work->Frpos ; Memory = Numeric->Memory ; fncols = Work->fncols ; fnrows = Work->fnrows ; tp = (Tuple *) NULL ; tp1 = (Tuple *) NULL ; tp2 = (Tuple *) NULL ; /* ---------------------------------------------------------------------- */ /* add the current frontal matrix to the degrees of each column */ /* ---------------------------------------------------------------------- */ if (!Symbolic->fixQ) { /* but only if the column ordering is not fixed */ UMFPACK_IVDEP for (j = 0 ; j < fncols ; j++) { /* add the current frontal matrix to the degree */ ASSERT (Fcols [j] >= 0 && Fcols [j] < n_col) ; Col_degree [Fcols [j]] += fnrows ; } } /* ---------------------------------------------------------------------- */ /* add the current frontal matrix to the degrees of each row */ /* ---------------------------------------------------------------------- */ UMFPACK_IVDEP for (i = 0 ; i < fnrows ; i++) { /* add the current frontal matrix to the degree */ ASSERT (Frows [i] >= 0 && Frows [i] < n_row) ; Row_degree [Frows [i]] += fncols ; } /* ---------------------------------------------------------------------- */ /* Reset the external degree counters */ /* ---------------------------------------------------------------------- */ E = Work->E ; max_mark = MAX_MARK (nn) ; if (!Work->pivcol_in_front) { /* clear the external column degrees. no more Usons of current front */ Work->cdeg0 += (nn + 1) ; if (Work->cdeg0 >= max_mark) { /* guard against integer overflow. This is very rare */ DEBUG1 (("Integer overflow, cdeg\n")) ; Work->cdeg0 = 1 ; UMFPACK_IVDEP for (e = 1 ; e <= Work->nel ; e++) { if (E [e]) { ep = (Element *) (Memory + E [e]) ; ep->cdeg = 0 ; } } } } if (!Work->pivrow_in_front) { /* clear the external row degrees. no more Lsons of current front */ Work->rdeg0 += (nn + 1) ; if (Work->rdeg0 >= max_mark) { /* guard against integer overflow. This is very rare */ DEBUG1 (("Integer overflow, rdeg\n")) ; Work->rdeg0 = 1 ; UMFPACK_IVDEP for (e = 1 ; e <= Work->nel ; e++) { if (E [e]) { ep = (Element *) (Memory + E [e]) ; ep->rdeg = 0 ; } } } } /* ---------------------------------------------------------------------- */ /* clear row/col offsets */ /* ---------------------------------------------------------------------- */ if (!Work->pivrow_in_front) { UMFPACK_IVDEP for (j = 0 ; j < fncols ; j++) { Fcpos [Fcols [j]] = EMPTY ; } } if (!Work->pivcol_in_front) { UMFPACK_IVDEP for (i = 0 ; i < fnrows ; i++) { Frpos [Frows [i]] = EMPTY ; } } if (fncols <= 0 || fnrows <= 0) { /* no element to create */ DEBUG2 (("Element evaporation\n")) ; Work->prior_element = EMPTY ; return (TRUE) ; } /* ---------------------------------------------------------------------- */ /* create element for later assembly */ /* ---------------------------------------------------------------------- */ #ifndef NDEBUG UMF_allocfail = FALSE ; if (UMF_gprob > 0) { double rrr = ((double) (rand ( ))) / (((double) RAND_MAX) + 1) ; DEBUG4 (("Check random %e %e\n", rrr, UMF_gprob)) ; UMF_allocfail = rrr < UMF_gprob ; if (UMF_allocfail) DEBUGm2 (("Random garbage collection (create)\n")); } #endif needunits = 0 ; got_memory = FALSE ; eloc = UMF_mem_alloc_element (Numeric, fnrows, fncols, &Rows, &Cols, &C, &needunits, &ep) ; /* if UMF_get_memory needs to be called */ if (Work->do_grow) { /* full compaction of current frontal matrix, since UMF_grow_front will * be called next anyway. */ r2 = fnrows ; c2 = fncols ; do_Fcpos = FALSE ; } else { /* partial compaction. */ r2 = MAX (fnrows, Work->fnrows_new + 1) ; c2 = MAX (fncols, Work->fncols_new + 1) ; /* recompute Fcpos if pivot row is in the front */ do_Fcpos = Work->pivrow_in_front ; } if (!eloc) { /* Do garbage collection, realloc, and try again. */ /* Compact the current front if it needs to grow anyway. */ /* Note that there are no pivot rows or columns in the current front */ DEBUGm3 (("get_memory from umf_create_element, 1\n")) ; if (!UMF_get_memory (Numeric, Work, needunits, r2, c2, do_Fcpos)) { /* :: out of memory in umf_create_element (1) :: */ DEBUGm4 (("out of memory: create element (1)\n")) ; return (FALSE) ; /* out of memory */ } got_memory = TRUE ; Memory = Numeric->Memory ; eloc = UMF_mem_alloc_element (Numeric, fnrows, fncols, &Rows, &Cols, &C, &needunits, &ep) ; ASSERT (eloc >= 0) ; if (!eloc) { /* :: out of memory in umf_create_element (2) :: */ DEBUGm4 (("out of memory: create element (2)\n")) ; return (FALSE) ; /* out of memory */ } } e = ++(Work->nel) ; /* get the name of this new frontal matrix */ Work->prior_element = e ; DEBUG8 (("wrapup e "ID" nel "ID"\n", e, Work->nel)) ; ASSERT (e > 0 && e < Work->elen) ; ASSERT (E [e] == 0) ; E [e] = eloc ; if (Work->pivcol_in_front) { /* the new element is a Uson of the next frontal matrix */ ep->cdeg = Work->cdeg0 ; } if (Work->pivrow_in_front) { /* the new element is an Lson of the next frontal matrix */ ep->rdeg = Work->rdeg0 ; } /* ---------------------------------------------------------------------- */ /* copy frontal matrix into the new element */ /* ---------------------------------------------------------------------- */ UMFPACK_IVDEP for (i = 0 ; i < fnrows ; i++) { Rows [i] = Frows [i] ; } UMFPACK_IVDEP for (i = 0 ; i < fncols ; i++) { Cols [i] = Fcols [i] ; } Fcol = Work->Fcblock ; DEBUG0 (("copy front "ID" by "ID"\n", fnrows, fncols)) ; fnr_curr = Work->fnr_curr ; ASSERT (fnr_curr >= 0 && fnr_curr % 2 == 1) ; for (j = 0 ; j < fncols ; j++) { copy_column (fnrows, Fcol, C) ; Fcol += fnr_curr ; C += fnrows ; } DEBUG8 (("element copied\n")) ; /* ---------------------------------------------------------------------- */ /* add tuples for the new element */ /* ---------------------------------------------------------------------- */ tuple.e = e ; if (got_memory) { /* ------------------------------------------------------------------ */ /* UMF_get_memory ensures enough space exists for each new tuple */ /* ------------------------------------------------------------------ */ /* place (e,f) in the element list of each column */ for (tuple.f = 0 ; tuple.f < fncols ; tuple.f++) { col = Fcols [tuple.f] ; ASSERT (col >= 0 && col < n_col) ; ASSERT (NON_PIVOTAL_COL (col)) ; ASSERT (Col_tuples [col]) ; tp = ((Tuple *) (Memory + Col_tuples [col])) + Col_tlen [col]++ ; *tp = tuple ; } /* ------------------------------------------------------------------ */ /* place (e,f) in the element list of each row */ for (tuple.f = 0 ; tuple.f < fnrows ; tuple.f++) { row = Frows [tuple.f] ; ASSERT (row >= 0 && row < n_row) ; ASSERT (NON_PIVOTAL_ROW (row)) ; ASSERT (Row_tuples [row]) ; tp = ((Tuple *) (Memory + Row_tuples [row])) + Row_tlen [row]++ ; *tp = tuple ; } } else { /* ------------------------------------------------------------------ */ /* place (e,f) in the element list of each column */ /* ------------------------------------------------------------------ */ /* might not have enough space for each tuple */ for (tuple.f = 0 ; tuple.f < fncols ; tuple.f++) { col = Fcols [tuple.f] ; ASSERT (col >= 0 && col < n_col) ; ASSERT (NON_PIVOTAL_COL (col)) ; t1 = Col_tuples [col] ; DEBUG1 (("Placing on col:"ID" , tuples at "ID"\n", col, Col_tuples [col])) ; size = 0 ; len = 0 ; if (t1) { p = Memory + t1 ; tp = (Tuple *) p ; size = GET_BLOCK_SIZE (p) ; len = Col_tlen [col] ; tp2 = tp + len ; } needunits = UNITS (Tuple, len + 1) ; DEBUG1 (("len: "ID" size: "ID" needunits: "ID"\n", len, size, needunits)); if (needunits > size && t1) { /* prune the tuples */ tp1 = tp ; tp2 = tp ; tpend = tp + len ; for ( ; tp < tpend ; tp++) { e = tp->e ; ASSERT (e > 0 && e <= Work->nel) ; if (!E [e]) continue ; /* element already deallocated */ f = tp->f ; p = Memory + E [e] ; ep = (Element *) p ; p += UNITS (Element, 1) ; Cols = (Int *) p ; ; if (Cols [f] == EMPTY) continue ; /* already assembled */ ASSERT (col == Cols [f]) ; *tp2++ = *tp ; /* leave the tuple in the list */ } len = tp2 - tp1 ; Col_tlen [col] = len ; needunits = UNITS (Tuple, len + 1) ; } if (needunits > size) { /* no room exists - reallocate elsewhere */ DEBUG1 (("REALLOCATE Col: "ID", size "ID" to "ID"\n", col, size, 2*needunits)) ; #ifndef NDEBUG UMF_allocfail = FALSE ; if (UMF_gprob > 0) /* a double relop, but ignore NaN case */ { double rrr = ((double) (rand ( ))) / (((double) RAND_MAX) + 1) ; DEBUG1 (("Check random %e %e\n", rrr, UMF_gprob)) ; UMF_allocfail = rrr < UMF_gprob ; if (UMF_allocfail) DEBUGm2 (("Random gar. (col tuple)\n")) ; } #endif needunits = MIN (2*needunits, (Int) UNITS (Tuple, nn)) ; t2 = UMF_mem_alloc_tail_block (Numeric, needunits) ; if (!t2) { /* :: get memory in umf_create_element (1) :: */ /* get memory, reconstruct all tuple lists, and return */ /* Compact the current front if it needs to grow anyway. */ /* Note: no pivot rows or columns in the current front */ DEBUGm4 (("get_memory from umf_create_element, 1\n")) ; return (UMF_get_memory (Numeric, Work, 0, r2, c2,do_Fcpos)); } Col_tuples [col] = t2 ; tp2 = (Tuple *) (Memory + t2) ; if (t1) { for (i = 0 ; i < len ; i++) { *tp2++ = *tp1++ ; } UMF_mem_free_tail_block (Numeric, t1) ; } } /* place the new (e,f) tuple in the element list of the column */ Col_tlen [col]++ ; *tp2 = tuple ; } /* ------------------------------------------------------------------ */ /* place (e,f) in the element list of each row */ /* ------------------------------------------------------------------ */ for (tuple.f = 0 ; tuple.f < fnrows ; tuple.f++) { row = Frows [tuple.f] ; ASSERT (row >= 0 && row < n_row) ; ASSERT (NON_PIVOTAL_ROW (row)) ; t1 = Row_tuples [row] ; DEBUG1 (("Placing on row:"ID" , tuples at "ID"\n", row, Row_tuples [row])) ; size = 0 ; len = 0 ; if (t1) { p = Memory + t1 ; tp = (Tuple *) p ; size = GET_BLOCK_SIZE (p) ; len = Row_tlen [row] ; tp2 = tp + len ; } needunits = UNITS (Tuple, len + 1) ; DEBUG1 (("len: "ID" size: "ID" needunits: "ID"\n", len, size, needunits)) ; if (needunits > size && t1) { /* prune the tuples */ tp1 = tp ; tp2 = tp ; tpend = tp + len ; for ( ; tp < tpend ; tp++) { e = tp->e ; ASSERT (e > 0 && e <= Work->nel) ; if (!E [e]) { continue ; /* element already deallocated */ } f = tp->f ; p = Memory + E [e] ; ep = (Element *) p ; p += UNITS (Element, 1) ; Cols = (Int *) p ; Rows = Cols + (ep->ncols) ; if (Rows [f] == EMPTY) continue ; /* already assembled */ ASSERT (row == Rows [f]) ; *tp2++ = *tp ; /* leave the tuple in the list */ } len = tp2 - tp1 ; Row_tlen [row] = len ; needunits = UNITS (Tuple, len + 1) ; } if (needunits > size) { /* no room exists - reallocate elsewhere */ DEBUG1 (("REALLOCATE Row: "ID", size "ID" to "ID"\n", row, size, 2*needunits)) ; #ifndef NDEBUG UMF_allocfail = FALSE ; if (UMF_gprob > 0) /* a double relop, but ignore NaN case */ { double rrr = ((double) (rand ( ))) / (((double) RAND_MAX) + 1) ; DEBUG1 (("Check random %e %e\n", rrr, UMF_gprob)) ; UMF_allocfail = rrr < UMF_gprob ; if (UMF_allocfail) DEBUGm2 (("Random gar. (row tuple)\n")) ; } #endif needunits = MIN (2*needunits, (Int) UNITS (Tuple, nn)) ; t2 = UMF_mem_alloc_tail_block (Numeric, needunits) ; if (!t2) { /* :: get memory in umf_create_element (2) :: */ /* get memory, reconstruct all tuple lists, and return */ /* Compact the current front if it needs to grow anyway. */ /* Note: no pivot rows or columns in the current front */ DEBUGm4 (("get_memory from umf_create_element, 2\n")) ; return (UMF_get_memory (Numeric, Work, 0, r2, c2,do_Fcpos)); } Row_tuples [row] = t2 ; tp2 = (Tuple *) (Memory + t2) ; if (t1) { for (i = 0 ; i < len ; i++) { *tp2++ = *tp1++ ; } UMF_mem_free_tail_block (Numeric, t1) ; } } /* place the new (e,f) tuple in the element list of the row */ Row_tlen [row]++ ; *tp2 = tuple ; } } /* ---------------------------------------------------------------------- */ #ifndef NDEBUG DEBUG1 (("Done extending\nFINAL: element row pattern: len="ID"\n", fncols)); for (j = 0 ; j < fncols ; j++) DEBUG1 ((""ID"\n", Fcols [j])) ; DEBUG1 (("FINAL: element col pattern: len="ID"\n", fnrows)) ; for (j = 0 ; j < fnrows ; j++) DEBUG1 ((""ID"\n", Frows [j])) ; for (j = 0 ; j < fncols ; j++) { col = Fcols [j] ; ASSERT (col >= 0 && col < n_col) ; UMF_dump_rowcol (1, Numeric, Work, col, !Symbolic->fixQ) ; } for (j = 0 ; j < fnrows ; j++) { row = Frows [j] ; ASSERT (row >= 0 && row < n_row) ; UMF_dump_rowcol (0, Numeric, Work, row, TRUE) ; } if (n_row < 1000 && n_col < 1000) { UMF_dump_memory (Numeric) ; } DEBUG1 (("New element, after filling with stuff: "ID"\n", e)) ; UMF_dump_element (Numeric, Work, e, TRUE) ; if (nn < 1000) { DEBUG4 (("Matrix dump, after New element: "ID"\n", e)) ; UMF_dump_matrix (Numeric, Work, TRUE) ; } DEBUG3 (("FRONTAL WRAPUP DONE\n")) ; #endif return (TRUE) ; }