//------------------------------------------------------------------------------ // UMFPACK/Source/umfpack_get_numeric: extract LU factors from Numeric object //------------------------------------------------------------------------------ // UMFPACK, Copyright (c) 2005-2023, Timothy A. Davis, All Rights Reserved. // SPDX-License-Identifier: GPL-2.0+ //------------------------------------------------------------------------------ /* User-callable. Gets the LU factors and the permutation vectors held in the Numeric object. L is returned in sparse row form with sorted rows, U is returned in sparse column form with sorted columns, and P and Q are returned as permutation vectors. See umfpack.h for a more detailed description. Returns TRUE if successful, FALSE if the Numeric object is invalid or if out of memory. Dynamic memory usage: calls UMF_malloc twice, for a total space of 2*n integers, and then frees all of it via UMF_free when done. */ #include "umf_internal.h" #include "umf_valid_numeric.h" #include "umf_malloc.h" #include "umf_free.h" #ifndef NDEBUG PRIVATE Int init_count ; #endif PRIVATE void get_L ( Int Lp [ ], Int Lj [ ], double Lx [ ], #ifdef COMPLEX double Lz [ ], #endif NumericType *Numeric, Int Pattern [ ], Int Wi [ ] ) ; PRIVATE void get_U ( Int Up [ ], Int Ui [ ], double Ux [ ], #ifdef COMPLEX double Uz [ ], #endif NumericType *Numeric, Int Pattern [ ], Int Wi [ ] ) ; /* ========================================================================== */ /* === UMFPACK_get_numeric ================================================== */ /* ========================================================================== */ int UMFPACK_get_numeric ( Int Lp [ ], Int Lj [ ], double Lx [ ], #ifdef COMPLEX double Lz [ ], #endif Int Up [ ], Int Ui [ ], double Ux [ ], #ifdef COMPLEX double Uz [ ], #endif Int P [ ], Int Q [ ], double Dx [ ], #ifdef COMPLEX double Dz [ ], #endif Int *p_do_recip, double Rs [ ], void *NumericHandle ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ NumericType *Numeric ; Int getL, getU, *Rperm, *Cperm, k, nn, n_row, n_col, *Wi, *Pattern, n_inner ; double *Rs1 ; Entry *D ; #ifndef NDEBUG init_count = UMF_malloc_count ; #endif Wi = (Int *) NULL ; Pattern = (Int *) NULL ; /* ---------------------------------------------------------------------- */ /* check input parameters */ /* ---------------------------------------------------------------------- */ Numeric = (NumericType *) NumericHandle ; if (!UMF_valid_numeric (Numeric)) { return (UMFPACK_ERROR_invalid_Numeric_object) ; } n_row = Numeric->n_row ; n_col = Numeric->n_col ; nn = MAX (n_row, n_col) ; n_inner = MIN (n_row, n_col) ; /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ getL = Lp && Lj && Lx ; getU = Up && Ui && Ux ; if (getL || getU) { Wi = (Int *) UMF_malloc (nn, sizeof (Int)) ; Pattern = (Int *) UMF_malloc (nn, sizeof (Int)) ; if (!Wi || !Pattern) { (void) UMF_free ((void *) Wi) ; (void) UMF_free ((void *) Pattern) ; ASSERT (UMF_malloc_count == init_count) ; DEBUGm4 (("out of memory: get numeric\n")) ; return (UMFPACK_ERROR_out_of_memory) ; } ASSERT (UMF_malloc_count == init_count + 2) ; } /* ---------------------------------------------------------------------- */ /* get contents of Numeric */ /* ---------------------------------------------------------------------- */ if (P != (Int *) NULL) { Rperm = Numeric->Rperm ; for (k = 0 ; k < n_row ; k++) { P [k] = Rperm [k] ; } } if (Q != (Int *) NULL) { Cperm = Numeric->Cperm ; for (k = 0 ; k < n_col ; k++) { Q [k] = Cperm [k] ; } } if (getL) { get_L (Lp, Lj, Lx, #ifdef COMPLEX Lz, #endif Numeric, Pattern, Wi) ; } if (getU) { get_U (Up, Ui, Ux, #ifdef COMPLEX Uz, #endif Numeric, Pattern, Wi) ; } if (Dx != (double *) NULL) { D = Numeric->D ; #ifdef COMPLEX if (SPLIT (Dz)) { for (k = 0 ; k < n_inner ; k++) { Dx [k] = REAL_COMPONENT (D [k]) ; Dz [k] = IMAG_COMPONENT (D [k]) ; } } else { for (k = 0 ; k < n_inner ; k++) { Dx [2*k ] = REAL_COMPONENT (D [k]) ; Dx [2*k+1] = IMAG_COMPONENT (D [k]) ; } } #else { D = Numeric->D ; for (k = 0 ; k < n_inner ; k++) { Dx [k] = D [k] ; } } #endif } /* return the flag stating whether the scale factors are to be multiplied, * or divided. If do_recip is TRUE, multiply. Otherwise, divided. * If NRECIPROCAL is defined at compile time, the scale factors are always * to be used by dividing. */ if (p_do_recip != (Int *) NULL) { #ifndef NRECIPROCAL *p_do_recip = Numeric->do_recip ; #else *p_do_recip = FALSE ; #endif } if (Rs != (double *) NULL) { Rs1 = Numeric->Rs ; if (Rs1 == (double *) NULL) { /* R is the identity matrix. */ for (k = 0 ; k < n_row ; k++) { Rs [k] = 1.0 ; } } else { for (k = 0 ; k < n_row ; k++) { Rs [k] = Rs1 [k] ; } } } /* ---------------------------------------------------------------------- */ /* free the workspace */ /* ---------------------------------------------------------------------- */ (void) UMF_free ((void *) Wi) ; (void) UMF_free ((void *) Pattern) ; ASSERT (UMF_malloc_count == init_count) ; return (UMFPACK_OK) ; } /* ========================================================================== */ /* === get_L ================================================================ */ /* ========================================================================== */ /* The matrix L is stored in the following arrays in the Numeric object: Int Lpos [0..npiv] Int Lip [0..npiv], index into Numeric->Memory Int Lilen [0..npiv] Unit *(Numeric->Memory), pointer to memory space holding row indices and numerical values where npiv is the number of pivot entries found. If A is n_row-by-n_col, then npiv <= MIN (n_row,n_col). Let L_k denote the pattern of entries in column k of L (excluding the diagonal). An Lchain is a sequence of columns of L whose nonzero patterns are related. The start of an Lchain is denoted by a negative value of Lip [k]. To obtain L_k: (1) If column k starts an Lchain, then L_k is stored in its entirety. |Lip [k]| is an index into Numeric->Memory for the integer row indices in L_k. The number of entries in the column is |L_k| = Lilen [k]. This defines the pattern of the "leading" column of this chain. Lpos [k] is not used for the first column in the chain. Column zero is always a leading column. (2) If column k does not start an Lchain, then L_k is represented as a superset of L_k-1. Define Lnew_k such that (L_k-1 - {k} union Lnew_k) = L_k, where Lnew_k and (L_k-1)-{k} are disjoint. Lnew_k are the entries in L_k that are not in L_k-1. Lpos [k] holds the position of pivot row index k in the prior pattern L_k-1 (if it is present), so that the set subtraction (L_k-1)-{k} can be computed quickly, when computing the pattern of L_k from L_k-1. The number of new entries in L_k is stored in Lilen [k] = |Lnew_k|. Note that this means we must have the pattern L_k-1 to compute L_k. In both cases (1) and (2), we obtain the pattern L_k. The numerical values are stored in Numeric->Memory, starting at the index |Lip [k]| + Lilen [k]. It is stored in the same order as the entries in L_k, after L_k is obtained from cases (1) or (2), above. The advantage of using this "packed" data structure is that it can dramatically reduce the amount of storage needed for the pattern of L. The disadvantage is that it can be difficult for the user to access, and it does not match the sparse matrix data structure used in MATLAB. Thus, this routine is provided to create a conventional sparse matrix data structure for L, in sparse-row form. A row-form of L appears to MATLAB to be a column-oriented from of the transpose of L. If you would like a column-form of L, then use UMFPACK_transpose (an example of this is in umfpackmex.c). */ /* ========================================================================== */ PRIVATE void get_L ( Int Lp [ ], /* of size n_row+1 */ Int Lj [ ], /* of size lnz, where lnz = Lp [n_row] */ double Lx [ ], /* of size lnz */ #ifdef COMPLEX double Lz [ ], /* of size lnz */ #endif NumericType *Numeric, Int Pattern [ ], /* workspace of size n_row */ Int Wi [ ] /* workspace of size n_row */ ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Entry value ; Entry *xp, *Lval ; Int deg, *ip, j, row, n_row, n_col, n_inner, *Lpos, *Lilen, *Lip, p, llen, lnz2, lp, newLchain, k, pos, npiv, *Li, n1 ; #ifdef COMPLEX Int split = SPLIT (Lz) ; #endif /* ---------------------------------------------------------------------- */ /* get parameters */ /* ---------------------------------------------------------------------- */ DEBUG4 (("get_L start:\n")) ; n_row = Numeric->n_row ; n_col = Numeric->n_col ; n_inner = MIN (n_row, n_col) ; npiv = Numeric->npiv ; n1 = Numeric->n1 ; Lpos = Numeric->Lpos ; Lilen = Numeric->Lilen ; Lip = Numeric->Lip ; deg = 0 ; /* ---------------------------------------------------------------------- */ /* count the nonzeros in each row of L */ /* ---------------------------------------------------------------------- */ UMFPACK_IVDEP for (row = 0 ; row < n_inner ; row++) { /* include the diagonal entry in the row counts */ Wi [row] = 1 ; } UMFPACK_IVDEP for (row = n_inner ; row < n_row ; row++) { Wi [row] = 0 ; } /* singletons */ for (k = 0 ; k < n1 ; k++) { DEBUG4 (("Singleton k "ID"\n", k)) ; deg = Lilen [k] ; if (deg > 0) { lp = Lip [k] ; Li = (Int *) (Numeric->Memory + lp) ; lp += UNITS (Int, deg) ; Lval = (Entry *) (Numeric->Memory + lp) ; for (j = 0 ; j < deg ; j++) { row = Li [j] ; value = Lval [j] ; DEBUG4 ((" row "ID" k "ID" value", row, k)) ; EDEBUG4 (value) ; DEBUG4 (("\n")) ; if (IS_NONZERO (value)) { Wi [row]++ ; } } } } /* non-singletons */ for (k = n1 ; k < npiv ; k++) { /* ------------------------------------------------------------------ */ /* make column of L in Pattern [0..deg-1] */ /* ------------------------------------------------------------------ */ lp = Lip [k] ; newLchain = (lp < 0) ; if (newLchain) { lp = -lp ; deg = 0 ; DEBUG4 (("start of chain for column of L\n")) ; } /* remove pivot row */ pos = Lpos [k] ; if (pos != EMPTY) { DEBUG4 ((" k "ID" removing row "ID" at position "ID"\n", k, Pattern [pos], pos)) ; ASSERT (!newLchain) ; ASSERT (deg > 0) ; ASSERT (pos >= 0 && pos < deg) ; ASSERT (Pattern [pos] == k) ; Pattern [pos] = Pattern [--deg] ; } /* concatenate the pattern */ ip = (Int *) (Numeric->Memory + lp) ; llen = Lilen [k] ; for (j = 0 ; j < llen ; j++) { row = *ip++ ; DEBUG4 ((" row "ID" k "ID"\n", row, k)) ; ASSERT (row > k && row < n_row) ; Pattern [deg++] = row ; } xp = (Entry *) (Numeric->Memory + lp + UNITS (Int, llen)) ; for (j = 0 ; j < deg ; j++) { DEBUG4 ((" row "ID" k "ID" value", Pattern [j], k)) ; row = Pattern [j] ; value = *xp++ ; EDEBUG4 (value) ; DEBUG4 (("\n")) ; if (IS_NONZERO (value)) { Wi [row]++ ; } } } /* ---------------------------------------------------------------------- */ /* construct the final row form of L */ /* ---------------------------------------------------------------------- */ /* create the row pointers */ lnz2 = 0 ; for (row = 0 ; row < n_row ; row++) { Lp [row] = lnz2 ; lnz2 += Wi [row] ; Wi [row] = Lp [row] ; } Lp [n_row] = lnz2 ; ASSERT (Numeric->lnz + n_inner == lnz2) ; /* add entries from the rows of L (singletons) */ for (k = 0 ; k < n1 ; k++) { DEBUG4 (("Singleton k "ID"\n", k)) ; deg = Lilen [k] ; if (deg > 0) { lp = Lip [k] ; Li = (Int *) (Numeric->Memory + lp) ; lp += UNITS (Int, deg) ; Lval = (Entry *) (Numeric->Memory + lp) ; for (j = 0 ; j < deg ; j++) { row = Li [j] ; value = Lval [j] ; DEBUG4 ((" row "ID" k "ID" value", row, k)) ; EDEBUG4 (value) ; DEBUG4 (("\n")) ; if (IS_NONZERO (value)) { p = Wi [row]++ ; Lj [p] = k ; #ifdef COMPLEX if (split) { Lx [p] = REAL_COMPONENT (value) ; Lz [p] = IMAG_COMPONENT (value) ; } else { Lx [2*p ] = REAL_COMPONENT (value) ; Lx [2*p+1] = IMAG_COMPONENT (value) ; } #else Lx [p] = value ; #endif } } } } /* add entries from the rows of L (non-singletons) */ for (k = n1 ; k < npiv ; k++) { /* ------------------------------------------------------------------ */ /* make column of L in Pattern [0..deg-1] */ /* ------------------------------------------------------------------ */ lp = Lip [k] ; newLchain = (lp < 0) ; if (newLchain) { lp = -lp ; deg = 0 ; DEBUG4 (("start of chain for column of L\n")) ; } /* remove pivot row */ pos = Lpos [k] ; if (pos != EMPTY) { DEBUG4 ((" k "ID" removing row "ID" at position "ID"\n", k, Pattern [pos], pos)) ; ASSERT (!newLchain) ; ASSERT (deg > 0) ; ASSERT (pos >= 0 && pos < deg) ; ASSERT (Pattern [pos] == k) ; Pattern [pos] = Pattern [--deg] ; } /* concatenate the pattern */ ip = (Int *) (Numeric->Memory + lp) ; llen = Lilen [k] ; for (j = 0 ; j < llen ; j++) { row = *ip++ ; DEBUG4 ((" row "ID" k "ID"\n", row, k)) ; ASSERT (row > k) ; Pattern [deg++] = row ; } xp = (Entry *) (Numeric->Memory + lp + UNITS (Int, llen)) ; for (j = 0 ; j < deg ; j++) { DEBUG4 ((" row "ID" k "ID" value", Pattern [j], k)) ; row = Pattern [j] ; value = *xp++ ; EDEBUG4 (value) ; DEBUG4 (("\n")) ; if (IS_NONZERO (value)) { p = Wi [row]++ ; Lj [p] = k ; #ifdef COMPLEX if (split) { Lx [p] = REAL_COMPONENT (value) ; Lz [p] = IMAG_COMPONENT (value) ; } else { Lx [2*p ] = REAL_COMPONENT (value) ; Lx [2*p+1] = IMAG_COMPONENT (value) ; } #else Lx [p] = value ; #endif } } } /* add all of the diagonal entries (L is unit diagonal) */ for (row = 0 ; row < n_inner ; row++) { p = Wi [row]++ ; Lj [p] = row ; #ifdef COMPLEX if (split) { Lx [p] = 1. ; Lz [p] = 0. ; } else { Lx [2*p ] = 1. ; Lx [2*p+1] = 0. ; } #else Lx [p] = 1. ; #endif ASSERT (Wi [row] == Lp [row+1]) ; } #ifndef NDEBUG DEBUG6 (("L matrix (stored by rows):")) ; UMF_dump_col_matrix (Lx, #ifdef COMPLEX Lz, #endif Lj, Lp, n_inner, n_row, Numeric->lnz+n_inner) ; #endif DEBUG4 (("get_L done:\n")) ; } /* ========================================================================== */ /* === get_U ================================================================ */ /* ========================================================================== */ /* The matrix U is stored in the following arrays in the Numeric object: Int Upos [0..npiv] Int Uip [0..npiv], index into Numeric->Memory Int Uilen [0..npiv] Unit *(Numeric->Memory), pointer to memory space holding column indices and numerical values where npiv is the number of pivot entries found. If A is n_row-by-n_col, then npiv <= MIN (n_row,n_col). Let U_k denote the pattern of entries in row k of U (excluding the diagonal). A Uchain is a sequence of columns of U whose nonzero patterns are related. The start of a Uchain is denoted by a negative value of Uip [k]. To obtain U_k-1: (1) If row k is the start of a Uchain then Uip [k] is negative and |Uip [k]| is an index into Numeric->Memory for the integer column indices in U_k-1. The number of entries in the row is |U_k-1| = Uilen [k]. This defines the pattern of the "trailing" row of this chain that ends at row k-1. (2) If row k is not the start of a Uchain, then U_k-1 is a subset of U_k. The indices in U_k are arranged so that last Uilen [k] entries of U_k are those indices not in U_k-1. Next, the pivot column index k is added if it appears in row U_k-1 (it never appears in U_k). Upos [k] holds the position of pivot column index k in the pattern U_k-1 (if it is present), so that the set union (U_k-1)+{k} can be computed quickly, when computing the pattern of U_k-1 from U_k. Note that this means we must have the pattern U_k to compute L_k-1. In both cases (1) and (2), we obtain the pattern U_k. The numerical values are stored in Numeric->Memory. If k is the start of a Uchain, then the offset is |Uip [k]| plus the size of the space needed to store the pattern U_k-1. Otherwise, Uip [k] is the offset itself of the numerical values, since in this case no pattern is stored. The numerical values are stored in the same order as the entries in U_k, after U_k is obtained from cases (1) or (2), above. The advantage of using this "packed" data structure is that it can dramatically reduce the amount of storage needed for the pattern of U. The disadvantage is that it can be difficult for the user to access, and it does not match the sparse matrix data structure used in MATLAB. Thus, this routine is provided to create a conventional sparse matrix data structure for U, in sparse-column form. */ /* ========================================================================== */ PRIVATE void get_U ( Int Up [ ], /* of size n_col+1 */ Int Ui [ ], /* of size unz, where unz = Up [n_col] */ double Ux [ ], /* of size unz */ #ifdef COMPLEX double Uz [ ], /* of size unz */ #endif NumericType *Numeric, Int Pattern [ ], /* workspace of size n_col */ Int Wi [ ] /* workspace of size n_col */ ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Entry value ; Entry *xp, *D, *Uval ; Int deg, j, *ip, col, *Upos, *Uilen, *Uip, n_col, ulen, *Usi, unz2, p, k, up, newUchain, pos, npiv, n1 ; #ifdef COMPLEX Int split = SPLIT (Uz) ; #endif #ifndef NDEBUG Int nnzpiv = 0 ; #endif /* ---------------------------------------------------------------------- */ /* get parameters */ /* ---------------------------------------------------------------------- */ DEBUG4 (("get_U start:\n")) ; n_col = Numeric->n_col ; n1 = Numeric->n1 ; npiv = Numeric->npiv ; Upos = Numeric->Upos ; Uilen = Numeric->Uilen ; Uip = Numeric->Uip ; D = Numeric->D ; /* ---------------------------------------------------------------------- */ /* count the nonzeros in each column of U */ /* ---------------------------------------------------------------------- */ for (col = 0 ; col < npiv ; col++) { /* include the diagonal entry in the column counts */ DEBUG4 (("D ["ID"] = ", col)) ; EDEBUG4 (D [col]) ; Wi [col] = IS_NONZERO (D [col]) ; DEBUG4 ((" is nonzero: "ID"\n", Wi [col])) ; #ifndef NDEBUG nnzpiv += IS_NONZERO (D [col]) ; #endif } DEBUG4 (("nnzpiv "ID" "ID"\n", nnzpiv, Numeric->nnzpiv)) ; ASSERT (nnzpiv == Numeric->nnzpiv) ; for (col = npiv ; col < n_col ; col++) { /* diagonal entries are zero for structurally singular part */ Wi [col] = 0 ; } deg = Numeric->ulen ; if (deg > 0) { /* make last pivot row of U (singular matrices only) */ DEBUG0 (("Last pivot row of U: ulen "ID"\n", deg)) ; for (j = 0 ; j < deg ; j++) { Pattern [j] = Numeric->Upattern [j] ; DEBUG0 ((" column "ID"\n", Pattern [j])) ; } } /* non-singletons */ for (k = npiv-1 ; k >= n1 ; k--) { /* ------------------------------------------------------------------ */ /* use row k of U */ /* ------------------------------------------------------------------ */ up = Uip [k] ; ulen = Uilen [k] ; newUchain = (up < 0) ; if (newUchain) { up = -up ; xp = (Entry *) (Numeric->Memory + up + UNITS (Int, ulen)) ; } else { xp = (Entry *) (Numeric->Memory + up) ; } for (j = 0 ; j < deg ; j++) { DEBUG4 ((" k "ID" col "ID" value\n", k, Pattern [j])) ; col = Pattern [j] ; ASSERT (col >= 0 && col < n_col) ; value = *xp++ ; EDEBUG4 (value) ; DEBUG4 (("\n")) ; if (IS_NONZERO (value)) { Wi [col]++ ; } } /* ------------------------------------------------------------------ */ /* make row k-1 of U in Pattern [0..deg-1] */ /* ------------------------------------------------------------------ */ if (k == n1) break ; if (newUchain) { /* next row is a new Uchain */ deg = ulen ; DEBUG4 (("end of chain for row of U "ID" deg "ID"\n", k-1, deg)) ; ip = (Int *) (Numeric->Memory + up) ; for (j = 0 ; j < deg ; j++) { col = *ip++ ; DEBUG4 ((" k "ID" col "ID"\n", k-1, col)) ; ASSERT (k <= col) ; Pattern [j] = col ; } } else { deg -= ulen ; DEBUG4 (("middle of chain for row of U "ID" deg "ID"\n", k-1, deg)); ASSERT (deg >= 0) ; pos = Upos [k] ; if (pos != EMPTY) { /* add the pivot column */ DEBUG4 (("k "ID" add pivot entry at position "ID"\n", k, pos)) ; ASSERT (pos >= 0 && pos <= deg) ; Pattern [deg++] = Pattern [pos] ; Pattern [pos] = k ; } } } /* singletons */ for (k = n1 - 1 ; k >= 0 ; k--) { deg = Uilen [k] ; DEBUG4 (("Singleton k "ID"\n", k)) ; if (deg > 0) { up = Uip [k] ; Usi = (Int *) (Numeric->Memory + up) ; up += UNITS (Int, deg) ; Uval = (Entry *) (Numeric->Memory + up) ; for (j = 0 ; j < deg ; j++) { col = Usi [j] ; value = Uval [j] ; DEBUG4 ((" k "ID" col "ID" value", k, col)) ; EDEBUG4 (value) ; DEBUG4 (("\n")) ; if (IS_NONZERO (value)) { Wi [col]++ ; } } } } /* ---------------------------------------------------------------------- */ /* construct the final column form of U */ /* ---------------------------------------------------------------------- */ /* create the column pointers */ unz2 = 0 ; for (col = 0 ; col < n_col ; col++) { Up [col] = unz2 ; unz2 += Wi [col] ; } Up [n_col] = unz2 ; DEBUG1 (("Numeric->unz "ID" npiv "ID" nnzpiv "ID" unz2 "ID"\n", Numeric->unz, npiv, Numeric->nnzpiv, unz2)) ; ASSERT (Numeric->unz + Numeric->nnzpiv == unz2) ; for (col = 0 ; col < n_col ; col++) { Wi [col] = Up [col+1] ; } /* add all of the diagonal entries */ for (col = 0 ; col < npiv ; col++) { if (IS_NONZERO (D [col])) { p = --(Wi [col]) ; Ui [p] = col ; #ifdef COMPLEX if (split) { Ux [p] = REAL_COMPONENT (D [col]) ; Uz [p] = IMAG_COMPONENT (D [col]) ; } else { Ux [2*p ] = REAL_COMPONENT (D [col]) ; Ux [2*p+1] = IMAG_COMPONENT (D [col]) ; } #else Ux [p] = D [col] ; #endif } } /* add all the entries from the rows of U */ deg = Numeric->ulen ; if (deg > 0) { /* make last pivot row of U (singular matrices only) */ for (j = 0 ; j < deg ; j++) { Pattern [j] = Numeric->Upattern [j] ; } } /* non-singletons */ for (k = npiv-1 ; k >= n1 ; k--) { /* ------------------------------------------------------------------ */ /* use row k of U */ /* ------------------------------------------------------------------ */ up = Uip [k] ; ulen = Uilen [k] ; newUchain = (up < 0) ; if (newUchain) { up = -up ; xp = (Entry *) (Numeric->Memory + up + UNITS (Int, ulen)) ; } else { xp = (Entry *) (Numeric->Memory + up) ; } xp += deg ; for (j = deg-1 ; j >= 0 ; j--) { DEBUG4 ((" k "ID" col "ID" value", k, Pattern [j])) ; col = Pattern [j] ; ASSERT (col >= 0 && col < n_col) ; value = *(--xp) ; EDEBUG4 (value) ; DEBUG4 (("\n")) ; if (IS_NONZERO (value)) { p = --(Wi [col]) ; Ui [p] = k ; #ifdef COMPLEX if (split) { Ux [p] = REAL_COMPONENT (value) ; Uz [p] = IMAG_COMPONENT (value) ; } else { Ux [2*p ] = REAL_COMPONENT (value) ; Ux [2*p+1] = IMAG_COMPONENT (value) ; } #else Ux [p] = value ; #endif } } /* ------------------------------------------------------------------ */ /* make row k-1 of U in Pattern [0..deg-1] */ /* ------------------------------------------------------------------ */ if (newUchain) { /* next row is a new Uchain */ deg = ulen ; DEBUG4 (("end of chain for row of U "ID" deg "ID"\n", k-1, deg)) ; ip = (Int *) (Numeric->Memory + up) ; for (j = 0 ; j < deg ; j++) { col = *ip++ ; DEBUG4 ((" k "ID" col "ID"\n", k-1, col)) ; ASSERT (k <= col) ; Pattern [j] = col ; } } else { deg -= ulen ; DEBUG4 (("middle of chain for row of U "ID" deg "ID"\n", k-1, deg)); ASSERT (deg >= 0) ; pos = Upos [k] ; if (pos != EMPTY) { /* add the pivot column */ DEBUG4 (("k "ID" add pivot entry at position "ID"\n", k, pos)) ; ASSERT (pos >= 0 && pos <= deg) ; Pattern [deg++] = Pattern [pos] ; Pattern [pos] = k ; } } } /* singletons */ for (k = n1 - 1 ; k >= 0 ; k--) { deg = Uilen [k] ; DEBUG4 (("Singleton k "ID"\n", k)) ; if (deg > 0) { up = Uip [k] ; Usi = (Int *) (Numeric->Memory + up) ; up += UNITS (Int, deg) ; Uval = (Entry *) (Numeric->Memory + up) ; for (j = 0 ; j < deg ; j++) { col = Usi [j] ; value = Uval [j] ; DEBUG4 ((" k "ID" col "ID" value", k, col)) ; EDEBUG4 (value) ; DEBUG4 (("\n")) ; if (IS_NONZERO (value)) { p = --(Wi [col]) ; Ui [p] = k ; #ifdef COMPLEX if (split) { Ux [p] = REAL_COMPONENT (value) ; Uz [p] = IMAG_COMPONENT (value) ; } else { Ux [2*p ] = REAL_COMPONENT (value) ; Ux [2*p+1] = IMAG_COMPONENT (value) ; } #else Ux [p] = value ; #endif } } } } #ifndef NDEBUG DEBUG6 (("U matrix:")) ; UMF_dump_col_matrix (Ux, #ifdef COMPLEX Uz, #endif Ui, Up, Numeric->n_row, n_col, Numeric->unz + Numeric->nnzpiv) ; #endif }