//------------------------------------------------------------------------------ // UMFPACK/Source/umfpack_numeric: numeric factorization //------------------------------------------------------------------------------ // UMFPACK, Copyright (c) 2005-2023, Timothy A. Davis, All Rights Reserved. // SPDX-License-Identifier: GPL-2.0+ //------------------------------------------------------------------------------ /* User-callable. Factorizes A into its LU factors, given a symbolic pre-analysis computed by UMFPACK_symbolic. See umfpack.h for a description. Dynamic memory allocation: substantial. See comments (1) through (7), below. If an error occurs, all allocated space is free'd by UMF_free. If successful, the Numeric object contains 11 to 13 objects allocated by UMF_malloc that hold the LU factors of the input matrix. */ #include "umf_internal.h" #include "umf_valid_symbolic.h" #include "umf_set_stats.h" #include "umf_kernel.h" #include "umf_malloc.h" #include "umf_free.h" #include "umf_realloc.h" #ifndef NDEBUG PRIVATE Int init_count ; #endif PRIVATE Int work_alloc ( WorkType *Work, SymbolicType *Symbolic ) ; PRIVATE void free_work ( WorkType *Work ) ; PRIVATE Int numeric_alloc ( NumericType **NumericHandle, SymbolicType *Symbolic, double alloc_init, Int scale ) ; PRIVATE void error ( NumericType **Numeric, WorkType *Work ) ; /* ========================================================================== */ /* === UMFPACK_numeric ====================================================== */ /* ========================================================================== */ int UMFPACK_numeric ( const Int Ap [ ], const Int Ai [ ], const double Ax [ ], #ifdef COMPLEX const double Az [ ], #endif void *SymbolicHandle, void **NumericHandle, const double Control [UMFPACK_CONTROL], double User_Info [UMFPACK_INFO] ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ double Info2 [UMFPACK_INFO], alloc_init, relpt, relpt2, droptol, front_alloc_init, stats [2] ; double *Info ; WorkType WorkSpace, *Work ; NumericType *Numeric ; SymbolicType *Symbolic ; Int n_row, n_col, n_inner, newsize, i, status, *inew, npiv, ulen, scale ; Unit *mnew ; /* ---------------------------------------------------------------------- */ /* get the amount of time used by the process so far */ /* ---------------------------------------------------------------------- */ umfpack_tic (stats) ; /* ---------------------------------------------------------------------- */ /* initialize and check inputs */ /* ---------------------------------------------------------------------- */ #ifndef NDEBUG UMF_dump_start ( ) ; init_count = UMF_malloc_count ; DEBUGm4 (("\nUMFPACK numeric: U transpose version\n")) ; #endif /* If front_alloc_init negative then allocate that size of front in * UMF_start_front. If alloc_init negative, then allocate that initial * size of Numeric->Memory. */ relpt = GET_CONTROL (UMFPACK_PIVOT_TOLERANCE, UMFPACK_DEFAULT_PIVOT_TOLERANCE) ; relpt2 = GET_CONTROL (UMFPACK_SYM_PIVOT_TOLERANCE, UMFPACK_DEFAULT_SYM_PIVOT_TOLERANCE) ; alloc_init = GET_CONTROL (UMFPACK_ALLOC_INIT, UMFPACK_DEFAULT_ALLOC_INIT) ; front_alloc_init = GET_CONTROL (UMFPACK_FRONT_ALLOC_INIT, UMFPACK_DEFAULT_FRONT_ALLOC_INIT) ; scale = GET_CONTROL (UMFPACK_SCALE, UMFPACK_DEFAULT_SCALE) ; droptol = GET_CONTROL (UMFPACK_DROPTOL, UMFPACK_DEFAULT_DROPTOL) ; relpt = MAX (0.0, MIN (relpt, 1.0)) ; relpt2 = MAX (0.0, MIN (relpt2, 1.0)) ; droptol = MAX (0.0, droptol) ; front_alloc_init = MIN (1.0, front_alloc_init) ; if (scale != UMFPACK_SCALE_NONE && scale != UMFPACK_SCALE_MAX) { scale = UMFPACK_DEFAULT_SCALE ; } if (User_Info != (double *) NULL) { /* return Info in user's array */ Info = User_Info ; /* clear the parts of Info that are set by UMFPACK_numeric */ for (i = UMFPACK_NUMERIC_SIZE ; i <= UMFPACK_MAX_FRONT_NCOLS ; i++) { Info [i] = EMPTY ; } for (i = UMFPACK_NUMERIC_DEFRAG ; i < UMFPACK_IR_TAKEN ; i++) { Info [i] = EMPTY ; } } else { /* no Info array passed - use local one instead */ Info = Info2 ; for (i = 0 ; i < UMFPACK_INFO ; i++) { Info [i] = EMPTY ; } } Symbolic = (SymbolicType *) SymbolicHandle ; Numeric = (NumericType *) NULL ; if (!UMF_valid_symbolic (Symbolic)) { Info [UMFPACK_STATUS] = UMFPACK_ERROR_invalid_Symbolic_object ; return (UMFPACK_ERROR_invalid_Symbolic_object) ; } /* compute alloc_init automatically for AMD or other symmetric ordering */ if (/* Symbolic->ordering == UMFPACK_ORDERING_AMD */ alloc_init >= 0 && Symbolic->amd_lunz > 0) { alloc_init = (Symbolic->nz + Symbolic->amd_lunz) / Symbolic->lunz_bound; alloc_init = MIN (1.0, alloc_init) ; alloc_init *= UMF_REALLOC_INCREASE ; } n_row = Symbolic->n_row ; n_col = Symbolic->n_col ; n_inner = MIN (n_row, n_col) ; /* check for integer overflow in Numeric->Memory minimum size */ if (INT_OVERFLOW (Symbolic->dnum_mem_init_usage * sizeof (Unit))) { /* :: int overflow, initial Numeric->Memory size :: */ /* There's no hope to allocate a Numeric object big enough simply to * hold the initial matrix, so return an out-of-memory condition */ DEBUGm4 (("out of memory: numeric int overflow\n")) ; Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; return (UMFPACK_ERROR_out_of_memory) ; } Info [UMFPACK_STATUS] = UMFPACK_OK ; Info [UMFPACK_NROW] = n_row ; Info [UMFPACK_NCOL] = n_col ; Info [UMFPACK_SIZE_OF_UNIT] = (double) (sizeof (Unit)) ; if (!Ap || !Ai || !Ax || !NumericHandle) { Info [UMFPACK_STATUS] = UMFPACK_ERROR_argument_missing ; return (UMFPACK_ERROR_argument_missing) ; } Info [UMFPACK_NZ] = Ap [n_col] ; *NumericHandle = (void *) NULL ; /* ---------------------------------------------------------------------- */ /* allocate the Work object */ /* ---------------------------------------------------------------------- */ /* (1) calls UMF_malloc 15 or 17 times, to obtain temporary workspace of * size c+1 Entry's and 2*(n_row+1) + 3*(n_col+1) + (n_col+n_inner+1) + * (nn+1) + * 3*(c+1) + 2*(r+1) + max(r,c) + (nfr+1) integers plus 2*nn * more integers if diagonal pivoting is to be done. r is the maximum * number of rows in any frontal matrix, c is the maximum number of columns * in any frontal matrix, n_inner is min (n_row,n_col), nn is * max (n_row,n_col), and nfr is the number of frontal matrices. For a * square matrix, this is c+1 Entry's and about 8n + 3c + 2r + max(r,c) + * nfr integers, plus 2n more for diagonal pivoting. */ Work = &WorkSpace ; Work->n_row = n_row ; Work->n_col = n_col ; Work->nfr = Symbolic->nfr ; Work->nb = Symbolic->nb ; Work->n1 = Symbolic->n1 ; if (!work_alloc (Work, Symbolic)) { DEBUGm4 (("out of memory: numeric work\n")) ; Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; error (&Numeric, Work) ; return (UMFPACK_ERROR_out_of_memory) ; } ASSERT (UMF_malloc_count == init_count + 16 + 2*Symbolic->prefer_diagonal) ; /* ---------------------------------------------------------------------- */ /* allocate Numeric object */ /* ---------------------------------------------------------------------- */ /* (2) calls UMF_malloc 10 or 11 times, for a total space of * sizeof (NumericType) bytes, 4*(n_row+1) + 4*(n_row+1) integers, and * (n_inner+1) Entry's, plus n_row Entry's if row scaling is to be done. * sizeof (NumericType) is a small constant. Next, it calls UMF_malloc * once, for the variable-sized part of the Numeric object * (Numeric->Memory). The size of this object is the larger of * (Control [UMFPACK_ALLOC_INIT]) * (the approximate upper bound computed * by UMFPACK_symbolic), and the minimum required to start the numerical * factorization. * This request is reduced if it fails. */ if (!numeric_alloc (&Numeric, Symbolic, alloc_init, scale)) { DEBUGm4 (("out of memory: initial numeric\n")) ; Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; error (&Numeric, Work) ; return (UMFPACK_ERROR_out_of_memory) ; } DEBUG0 (("malloc: init_count "ID" UMF_malloc_count "ID"\n", init_count, UMF_malloc_count)) ; ASSERT (UMF_malloc_count == init_count + (16 + 2*Symbolic->prefer_diagonal) + (11 + (scale != UMFPACK_SCALE_NONE))) ; /* set control parameters */ Numeric->relpt = relpt ; Numeric->relpt2 = relpt2 ; Numeric->droptol = droptol ; Numeric->alloc_init = alloc_init ; Numeric->front_alloc_init = front_alloc_init ; Numeric->scale = scale ; DEBUG0 (("umf relpt %g %g init %g %g inc %g red %g\n", relpt, relpt2, alloc_init, front_alloc_init, UMF_REALLOC_INCREASE, UMF_REALLOC_REDUCTION)) ; /* ---------------------------------------------------------------------- */ /* scale and factorize */ /* ---------------------------------------------------------------------- */ /* (3) During numerical factorization (inside UMF_kernel), the variable-size * block of memory is increased in size via a call to UMF_realloc if it is * found to be too small. During factorization, this block holds the * pattern and values of L and U at the top end, and the elements * (contibution blocks) and the current frontal matrix (Work->F*) at the * bottom end. The peak size of the variable-sized object is estimated in * UMFPACK_*symbolic (Info [UMFPACK_VARIABLE_PEAK_ESTIMATE]), although this * upper bound can be very loose. The size of the Symbolic object * (which is currently allocated) is in Info [UMFPACK_SYMBOLIC_SIZE], and * is between 2*n and 13*n integers. */ DEBUG0 (("Calling umf_kernel\n")) ; status = UMF_kernel (Ap, Ai, Ax, #ifdef COMPLEX Az, #endif Numeric, Work, Symbolic) ; Info [UMFPACK_STATUS] = status ; if (status < UMFPACK_OK) { /* out of memory, or pattern has changed */ error (&Numeric, Work) ; return (status) ; } Info [UMFPACK_FORCED_UPDATES] = Work->nforced ; Info [UMFPACK_VARIABLE_INIT] = Numeric->init_usage ; if (Symbolic->prefer_diagonal) { Info [UMFPACK_NOFF_DIAG] = Work->noff_diagonal ; } DEBUG0 (("malloc: init_count "ID" UMF_malloc_count "ID"\n", init_count, UMF_malloc_count)) ; npiv = Numeric->npiv ; /* = n_inner for nonsingular matrices */ ulen = Numeric->ulen ; /* = 0 for square nonsingular matrices */ /* ---------------------------------------------------------------------- */ /* free Work object */ /* ---------------------------------------------------------------------- */ /* (4) After numerical factorization all of the objects allocated in step * (1) are freed via UMF_free, except that one object of size n_col+1 is * kept if there are off-diagonal nonzeros in the last pivot row (can only * occur for singular or rectangular matrices). This is Work->Upattern, * which is transfered to Numeric->Upattern if ulen > 0. */ DEBUG0 (("malloc: init_count "ID" UMF_malloc_count "ID"\n", init_count, UMF_malloc_count)) ; free_work (Work) ; DEBUG0 (("malloc: init_count "ID" UMF_malloc_count "ID"\n", init_count, UMF_malloc_count)) ; DEBUG0 (("Numeric->ulen: "ID" scale: "ID"\n", ulen, scale)) ; ASSERT (UMF_malloc_count == init_count + (ulen > 0) + (11 + (scale != UMFPACK_SCALE_NONE))) ; /* ---------------------------------------------------------------------- */ /* reduce Lpos, Lilen, Lip, Upos, Uilen and Uip to size npiv+1 */ /* ---------------------------------------------------------------------- */ /* (5) Six components of the Numeric object are reduced in size if the * matrix is singular or rectangular. The original size is 3*(n_row+1) + * 3*(n_col+1) integers. The new size is 6*(npiv+1) integers. For * square non-singular matrices, these two sizes are the same. */ if (npiv < n_row) { /* reduce Lpos, Uilen, and Uip from size n_row+1 to size npiv */ inew = (Int *) UMF_realloc (Numeric->Lpos, npiv+1, sizeof (Int)) ; if (inew) { Numeric->Lpos = inew ; } inew = (Int *) UMF_realloc (Numeric->Uilen, npiv+1, sizeof (Int)) ; if (inew) { Numeric->Uilen = inew ; } inew = (Int *) UMF_realloc (Numeric->Uip, npiv+1, sizeof (Int)) ; if (inew) { Numeric->Uip = inew ; } } if (npiv < n_col) { /* reduce Upos, Lilen, and Lip from size n_col+1 to size npiv */ inew = (Int *) UMF_realloc (Numeric->Upos, npiv+1, sizeof (Int)) ; if (inew) { Numeric->Upos = inew ; } inew = (Int *) UMF_realloc (Numeric->Lilen, npiv+1, sizeof (Int)) ; if (inew) { Numeric->Lilen = inew ; } inew = (Int *) UMF_realloc (Numeric->Lip, npiv+1, sizeof (Int)) ; if (inew) { Numeric->Lip = inew ; } } /* ---------------------------------------------------------------------- */ /* reduce Numeric->Upattern from size n_col+1 to size ulen+1 */ /* ---------------------------------------------------------------------- */ /* (6) The size of Numeric->Upattern (formerly Work->Upattern) is reduced * from size n_col+1 to size ulen + 1. If ulen is zero, the object does * not exist. */ DEBUG4 (("ulen: "ID" Upattern %p\n", ulen, Numeric->Upattern)) ; ASSERT (IMPLIES (ulen == 0, Numeric->Upattern == (Int *) NULL)) ; if (ulen > 0 && ulen < n_col) { inew = (Int *) UMF_realloc (Numeric->Upattern, ulen+1, sizeof (Int)) ; if (inew) { Numeric->Upattern = inew ; } } /* ---------------------------------------------------------------------- */ /* reduce Numeric->Memory to hold just the LU factors at the head */ /* ---------------------------------------------------------------------- */ /* (7) The variable-sized block (Numeric->Memory) is reduced to hold just L * and U, via a call to UMF_realloc, since the frontal matrices are no * longer needed. */ newsize = Numeric->ihead ; if (newsize < Numeric->size) { mnew = (Unit *) UMF_realloc (Numeric->Memory, newsize, sizeof (Unit)) ; if (mnew) { /* realloc succeeded (how can it fail since the size is reduced?) */ Numeric->Memory = mnew ; Numeric->size = newsize ; } } Numeric->ihead = Numeric->size ; Numeric->itail = Numeric->ihead ; Numeric->tail_usage = 0 ; Numeric->ibig = EMPTY ; /* UMF_mem_alloc_tail_block can no longer be called (no tail marker) */ /* ---------------------------------------------------------------------- */ /* report the results and return the Numeric object */ /* ---------------------------------------------------------------------- */ UMF_set_stats ( Info, Symbolic, (double) Numeric->max_usage, /* actual peak Numeric->Memory */ (double) Numeric->size, /* actual final Numeric->Memory */ Numeric->flops, /* actual "true flops" */ (double) Numeric->lnz + n_inner, /* actual nz in L */ (double) Numeric->unz + Numeric->nnzpiv, /* actual nz in U */ (double) Numeric->maxfrsize, /* actual largest front size */ (double) ulen, /* actual Numeric->Upattern size */ (double) npiv, /* actual # pivots found */ (double) Numeric->maxnrows, /* actual largest #rows in front */ (double) Numeric->maxncols, /* actual largest #cols in front */ scale != UMFPACK_SCALE_NONE, Symbolic->prefer_diagonal, ACTUAL) ; Info [UMFPACK_ALLOC_INIT_USED] = Numeric->alloc_init ; Info [UMFPACK_NUMERIC_DEFRAG] = Numeric->ngarbage ; Info [UMFPACK_NUMERIC_REALLOC] = Numeric->nrealloc ; Info [UMFPACK_NUMERIC_COSTLY_REALLOC] = Numeric->ncostly ; Info [UMFPACK_COMPRESSED_PATTERN] = Numeric->isize ; Info [UMFPACK_LU_ENTRIES] = Numeric->nLentries + Numeric->nUentries + Numeric->npiv ; Info [UMFPACK_UDIAG_NZ] = Numeric->nnzpiv ; Info [UMFPACK_RSMIN] = Numeric->rsmin ; Info [UMFPACK_RSMAX] = Numeric->rsmax ; Info [UMFPACK_WAS_SCALED] = Numeric->scale ; /* nz in L and U with no dropping of small entries */ Info [UMFPACK_ALL_LNZ] = Numeric->all_lnz + n_inner ; Info [UMFPACK_ALL_UNZ] = Numeric->all_unz + Numeric->nnzpiv ; Info [UMFPACK_NZDROPPED] = (Numeric->all_lnz - Numeric->lnz) + (Numeric->all_unz - Numeric->unz) ; /* estimate of the reciprocal of the condition number. */ if (SCALAR_IS_ZERO (Numeric->min_udiag) || SCALAR_IS_ZERO (Numeric->max_udiag) || SCALAR_IS_NAN (Numeric->min_udiag) || SCALAR_IS_NAN (Numeric->max_udiag)) { /* rcond is zero if there is any zero or NaN on the diagonal */ Numeric->rcond = 0.0 ; } else { /* estimate of the recipricol of the condition number. */ /* This is NaN if diagonal is zero-free, but has one or more NaN's. */ Numeric->rcond = Numeric->min_udiag / Numeric->max_udiag ; } Info [UMFPACK_UMIN] = Numeric->min_udiag ; Info [UMFPACK_UMAX] = Numeric->max_udiag ; Info [UMFPACK_RCOND] = Numeric->rcond ; if (Numeric->nnzpiv < n_inner || SCALAR_IS_ZERO (Numeric->rcond) || SCALAR_IS_NAN (Numeric->rcond)) { /* there are zeros and/or NaN's on the diagonal of U */ DEBUG0 (("Warning, matrix is singular in umfpack_numeric\n")) ; DEBUG0 (("nnzpiv "ID" n_inner "ID" rcond %g\n", Numeric->nnzpiv, n_inner, Numeric->rcond)) ; status = UMFPACK_WARNING_singular_matrix ; Info [UMFPACK_STATUS] = status ; } Numeric->valid = NUMERIC_VALID ; *NumericHandle = (void *) Numeric ; /* Numeric has 11 to 13 objects */ ASSERT (UMF_malloc_count == init_count + 11 + + (ulen > 0) /* Numeric->Upattern */ + (scale != UMFPACK_SCALE_NONE)) ; /* Numeric->Rs */ /* ---------------------------------------------------------------------- */ /* get the time used by UMFPACK_numeric */ /* ---------------------------------------------------------------------- */ umfpack_toc (stats) ; Info [UMFPACK_NUMERIC_WALLTIME] = stats [0] ; Info [UMFPACK_NUMERIC_TIME] = stats [1] ; /* return UMFPACK_OK or UMFPACK_WARNING_singular_matrix */ return (status) ; } /* ========================================================================== */ /* === numeric_alloc ======================================================== */ /* ========================================================================== */ /* Allocate the Numeric object */ PRIVATE Int numeric_alloc ( NumericType **NumericHandle, SymbolicType *Symbolic, double alloc_init, Int scale ) { double nsize, bsize ; Int n_row, n_col, n_inner, min_usage, trying ; NumericType *Numeric ; DEBUG0 (("numeric alloc:\n")) ; n_row = Symbolic->n_row ; n_col = Symbolic->n_col ; n_inner = MIN (n_row, n_col) ; *NumericHandle = (NumericType *) NULL ; /* 1 allocation: accounted for in UMF_set_stats (num_On_size1), * free'd in umfpack_free_numeric */ Numeric = (NumericType *) UMF_malloc (1, sizeof (NumericType)) ; if (!Numeric) { return (FALSE) ; /* out of memory */ } Numeric->valid = 0 ; *NumericHandle = Numeric ; /* 9 allocations: accounted for in UMF_set_stats (num_On_size1), * free'd in umfpack_free_numeric */ Numeric->D = (Entry *) UMF_malloc (n_inner+1, sizeof (Entry)) ; Numeric->Rperm = (Int *) UMF_malloc (n_row+1, sizeof (Int)) ; Numeric->Cperm = (Int *) UMF_malloc (n_col+1, sizeof (Int)) ; Numeric->Lpos = (Int *) UMF_malloc (n_row+1, sizeof (Int)) ; Numeric->Lilen = (Int *) UMF_malloc (n_col+1, sizeof (Int)) ; Numeric->Lip = (Int *) UMF_malloc (n_col+1, sizeof (Int)) ; Numeric->Upos = (Int *) UMF_malloc (n_col+1, sizeof (Int)) ; Numeric->Uilen = (Int *) UMF_malloc (n_row+1, sizeof (Int)) ; Numeric->Uip = (Int *) UMF_malloc (n_row+1, sizeof (Int)) ; /* 1 allocation if scaling: in UMF_set_stats (num_On_size1), * free'd in umfpack_free_numeric */ if (scale != UMFPACK_SCALE_NONE) { DEBUG0 (("Allocating scale factors\n")) ; Numeric->Rs = (double *) UMF_malloc (n_row, sizeof (double)) ; } else { DEBUG0 (("No scale factors allocated (R = I)\n")) ; Numeric->Rs = (double *) NULL ; } Numeric->Memory = (Unit *) NULL ; /* Upattern has already been allocated as part of the Work object. If * the matrix is singular or rectangular, and there are off-diagonal * nonzeros in the last pivot row, then Work->Upattern is not free'd. * Instead it is transfered to Numeric->Upattern. If it exists, * Numeric->Upattern is free'd in umfpack_free_numeric. */ Numeric->Upattern = (Int *) NULL ; /* used for singular matrices only */ if (!Numeric->D || !Numeric->Rperm || !Numeric->Cperm || !Numeric->Upos || !Numeric->Lpos || !Numeric->Lilen || !Numeric->Uilen || !Numeric->Lip || !Numeric->Uip || (scale != UMFPACK_SCALE_NONE && !Numeric->Rs)) { return (FALSE) ; /* out of memory */ } /* ---------------------------------------------------------------------- */ /* allocate initial Numeric->Memory for LU factors and elements */ /* ---------------------------------------------------------------------- */ if (alloc_init < 0) { /* -alloc_init is the exact size to initially allocate */ nsize = -alloc_init ; } else { /* alloc_init is a ratio of the upper bound memory usage */ nsize = (alloc_init * Symbolic->num_mem_usage_est) + 1 ; } min_usage = Symbolic->num_mem_init_usage ; /* Numeric->Memory must be large enough for UMF_kernel_init */ nsize = MAX (min_usage, nsize) ; /* Numeric->Memory cannot be larger in size than Int_MAX / sizeof(Unit) */ /* For ILP32 mode: 2GB (nsize cannot be bigger than 256 Mwords) */ bsize = ((double) Int_MAX) / sizeof (Unit) - 1 ; DEBUG0 (("bsize %g\n", bsize)) ; nsize = MIN (nsize, bsize) ; Numeric->size = (Int) nsize ; DEBUG0 (("Num init %g usage_est %g numsize "ID" minusage "ID"\n", alloc_init, Symbolic->num_mem_usage_est, Numeric->size, min_usage)) ; /* allocates 1 object: */ /* keep trying until successful, or memory request is too small */ trying = TRUE ; while (trying) { Numeric->Memory = (Unit *) UMF_malloc (Numeric->size, sizeof (Unit)) ; if (Numeric->Memory) { DEBUG0 (("Successful Numeric->size: "ID"\n", Numeric->size)) ; return (TRUE) ; } /* too much, reduce the request (but not below the minimum) */ /* and try again */ trying = Numeric->size > min_usage ; Numeric->size = (Int) (UMF_REALLOC_REDUCTION * ((double) Numeric->size)) ; Numeric->size = MAX (min_usage, Numeric->size) ; } return (FALSE) ; /* we failed to allocate Numeric->Memory */ } /* ========================================================================== */ /* === work_alloc =========================================================== */ /* ========================================================================== */ /* Allocate the Work object. Return TRUE if successful. */ PRIVATE Int work_alloc ( WorkType *Work, SymbolicType *Symbolic ) { Int n_row, n_col, nn, maxnrows, maxncols, nfr, ok, maxnrc, n1 ; n_row = Work->n_row ; n_col = Work->n_col ; nn = MAX (n_row, n_col) ; nfr = Work->nfr ; n1 = Symbolic->n1 ; ASSERT (n1 <= n_row && n1 <= n_col) ; maxnrows = Symbolic->maxnrows + Symbolic->nb ; maxnrows = MIN (n_row, maxnrows) ; maxncols = Symbolic->maxncols + Symbolic->nb ; maxncols = MIN (n_col, maxncols) ; maxnrc = MAX (maxnrows, maxncols) ; DEBUG0 (("work alloc: maxnrows+nb "ID" maxncols+nb "ID"\n", maxnrows, maxncols)) ; /* 15 allocations, freed in free_work: */ /* accounted for in UMF_set_stats (work_usage) */ Work->Wx = (Entry *) UMF_malloc (maxnrows + 1, sizeof (Entry)) ; Work->Wy = (Entry *) UMF_malloc (maxnrows + 1, sizeof (Entry)) ; Work->Frpos = (Int *) UMF_malloc (n_row + 1, sizeof (Int)) ; Work->Lpattern = (Int *) UMF_malloc (n_row + 1, sizeof (Int)) ; Work->Fcpos = (Int *) UMF_malloc (n_col + 1, sizeof (Int)) ; Work->Wp = (Int *) UMF_malloc (nn + 1, sizeof (Int)) ; Work->Wrp = (Int *) UMF_malloc (MAX (n_col,maxnrows) + 1, sizeof (Int)) ; Work->Frows = (Int *) UMF_malloc (maxnrows + 1, sizeof (Int)) ; Work->Wm = (Int *) UMF_malloc (maxnrows + 1, sizeof (Int)) ; Work->Fcols = (Int *) UMF_malloc (maxncols + 1, sizeof (Int)) ; Work->Wio = (Int *) UMF_malloc (maxncols + 1, sizeof (Int)) ; Work->Woi = (Int *) UMF_malloc (maxncols + 1, sizeof (Int)) ; Work->Woo = (Int *) UMF_malloc (maxnrc + 1, sizeof (Int)); Work->elen = (n_col - n1) + (n_row - n1) + MIN (n_col-n1, n_row-n1) + 1 ; Work->E = (Int *) UMF_malloc (Work->elen, sizeof (Int)) ; Work->Front_new1strow = (Int *) UMF_malloc (nfr + 1, sizeof (Int)) ; ok = (Work->Frpos && Work->Fcpos && Work->Lpattern && Work->Wp && Work->Wrp && Work->Frows && Work->Fcols && Work->Wio && Work->Woi && Work->Woo && Work->Wm && Work->E && Work->Front_new1strow && Work->Wx && Work->Wy) ; /* 2 allocations: accounted for in UMF_set_stats (work_usage) */ if (Symbolic->prefer_diagonal) { Work->Diagonal_map = (Int *) UMF_malloc (nn, sizeof (Int)) ; Work->Diagonal_imap = (Int *) UMF_malloc (nn, sizeof (Int)) ; ok = ok && Work->Diagonal_map && Work->Diagonal_imap ; } else { /* no diagonal map needed for rectangular matrices */ Work->Diagonal_map = (Int *) NULL ; Work->Diagonal_imap = (Int *) NULL ; } /* 1 allocation, may become part of Numeric (if singular or rectangular): */ Work->Upattern = (Int *) UMF_malloc (n_col + 1, sizeof (Int)) ; ok = ok && Work->Upattern ; /* current frontal matrix does not yet exist */ Work->Flublock = (Entry *) NULL ; Work->Flblock = (Entry *) NULL ; Work->Fublock = (Entry *) NULL ; Work->Fcblock = (Entry *) NULL ; DEBUG0 (("work alloc done.\n")) ; return (ok) ; } /* ========================================================================== */ /* === free_work ============================================================ */ /* ========================================================================== */ PRIVATE void free_work ( WorkType *Work ) { DEBUG0 (("work free:\n")) ; if (Work) { /* these 16 objects do exist */ Work->Wx = (Entry *) UMF_free ((void *) Work->Wx) ; Work->Wy = (Entry *) UMF_free ((void *) Work->Wy) ; Work->Frpos = (Int *) UMF_free ((void *) Work->Frpos) ; Work->Fcpos = (Int *) UMF_free ((void *) Work->Fcpos) ; Work->Lpattern = (Int *) UMF_free ((void *) Work->Lpattern) ; Work->Upattern = (Int *) UMF_free ((void *) Work->Upattern) ; Work->Wp = (Int *) UMF_free ((void *) Work->Wp) ; Work->Wrp = (Int *) UMF_free ((void *) Work->Wrp) ; Work->Frows = (Int *) UMF_free ((void *) Work->Frows) ; Work->Fcols = (Int *) UMF_free ((void *) Work->Fcols) ; Work->Wio = (Int *) UMF_free ((void *) Work->Wio) ; Work->Woi = (Int *) UMF_free ((void *) Work->Woi) ; Work->Woo = (Int *) UMF_free ((void *) Work->Woo) ; Work->Wm = (Int *) UMF_free ((void *) Work->Wm) ; Work->E = (Int *) UMF_free ((void *) Work->E) ; Work->Front_new1strow = (Int *) UMF_free ((void *) Work->Front_new1strow) ; /* these objects might not exist */ Work->Diagonal_map = (Int *) UMF_free ((void *) Work->Diagonal_map) ; Work->Diagonal_imap = (Int *) UMF_free ((void *) Work->Diagonal_imap) ; } DEBUG0 (("work free done.\n")) ; } /* ========================================================================== */ /* === error ================================================================ */ /* ========================================================================== */ /* Error return from UMFPACK_numeric. Free all allocated memory. */ PRIVATE void error ( NumericType **Numeric, WorkType *Work ) { free_work (Work) ; UMFPACK_free_numeric ((void **) Numeric) ; ASSERT (UMF_malloc_count == init_count) ; }