/* -- translated by f2c (version 19940927). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include #include "f2c.h" /* Subroutine */ int ssyr2_(char *uplo, integer *n, real *alpha, real *x, integer *incx, real *y, integer *incy, real *a, integer *lda) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; /* Local variables */ static integer info; static real temp1, temp2; static integer i, j; static integer ix, iy, jx, jy, kx, ky; extern int input_error(char *, int *); /* Purpose ======= SSYR2 performs the symmetric rank 2 operation A := alpha*x*y' + alpha*y*x' + A, where alpha is a scalar, x and y are n element vectors and A is an n by n symmetric matrix. Parameters ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of A is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of A is to be referenced. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. X - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Y - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. Unchanged on exit. INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. A - REAL array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced. On exit, the upper triangular part of the array A is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. On exit, the lower triangular part of the array A is overwritten by the lower triangular part of the updated matrix. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. Test the input parameters. Parameter adjustments Function Body */ #define X(I) x[(I)-1] #define Y(I) y[(I)-1] #define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)] info = 0; if ( strncmp(uplo, "U", 1)!=0 && strncmp(uplo, "L", 1)!=0 ) { info = 1; } else if (*n < 0) { info = 2; } else if (*incx == 0) { info = 5; } else if (*incy == 0) { info = 7; } else if (*lda < max(1,*n)) { info = 9; } if (info != 0) { input_error("SSYR2 ", &info); return 0; } /* Quick return if possible. */ if (*n == 0 || *alpha == 0.f) { return 0; } /* Set up the start points in X and Y if the increments are not both unity. */ if (*incx != 1 || *incy != 1) { if (*incx > 0) { kx = 1; } else { kx = 1 - (*n - 1) * *incx; } if (*incy > 0) { ky = 1; } else { ky = 1 - (*n - 1) * *incy; } jx = kx; jy = ky; } /* Start the operations. In this version the elements of A are accessed sequentially with one pass through the triangular part of A. */ if (strncmp(uplo, "U", 1)==0) { /* Form A when A is stored in the upper triangle. */ if (*incx == 1 && *incy == 1) { i__1 = *n; for (j = 1; j <= *n; ++j) { if (X(j) != 0.f || Y(j) != 0.f) { temp1 = *alpha * Y(j); temp2 = *alpha * X(j); i__2 = j; for (i = 1; i <= j; ++i) { A(i,j) = A(i,j) + X(i) * temp1 + Y(i) * temp2; /* L10: */ } } /* L20: */ } } else { i__1 = *n; for (j = 1; j <= *n; ++j) { if (X(jx) != 0.f || Y(jy) != 0.f) { temp1 = *alpha * Y(jy); temp2 = *alpha * X(jx); ix = kx; iy = ky; i__2 = j; for (i = 1; i <= j; ++i) { A(i,j) = A(i,j) + X(ix) * temp1 + Y(iy) * temp2; ix += *incx; iy += *incy; /* L30: */ } } jx += *incx; jy += *incy; /* L40: */ } } } else { /* Form A when A is stored in the lower triangle. */ if (*incx == 1 && *incy == 1) { i__1 = *n; for (j = 1; j <= *n; ++j) { if (X(j) != 0.f || Y(j) != 0.f) { temp1 = *alpha * Y(j); temp2 = *alpha * X(j); i__2 = *n; for (i = j; i <= *n; ++i) { A(i,j) = A(i,j) + X(i) * temp1 + Y(i) * temp2; /* L50: */ } } /* L60: */ } } else { i__1 = *n; for (j = 1; j <= *n; ++j) { if (X(jx) != 0.f || Y(jy) != 0.f) { temp1 = *alpha * Y(jy); temp2 = *alpha * X(jx); ix = jx; iy = jy; i__2 = *n; for (i = j; i <= *n; ++i) { A(i,j) = A(i,j) + X(ix) * temp1 + Y(iy) * temp2; ix += *incx; iy += *incy; /* L70: */ } } jx += *incx; jy += *incy; /* L80: */ } } } return 0; /* End of SSYR2 . */ } /* ssyr2_ */