/*! \file Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from U.S. Dept. of Energy) All rights reserved. The source code is distributed under BSD license, see the file License.txt at the top-level directory. */ /*! @file clacon.c * \brief Estimates the 1-norm * *
 * -- SuperLU routine (version 2.0) --
 * Univ. of California Berkeley, Xerox Palo Alto Research Center,
 * and Lawrence Berkeley National Lab.
 * November 15, 1997
 * 
*/ #include #include "slu_Cnames.h" #include "slu_scomplex.h" /*! \brief * *
 *   Purpose   
 *   =======   
 *
 *   CLACON estimates the 1-norm of a square matrix A.   
 *   Reverse communication is used for evaluating matrix-vector products. 
 * 
 *
 *   Arguments   
 *   =========   
 *
 *   N      (input) INT
 *          The order of the matrix.  N >= 1.   
 *
 *   V      (workspace) COMPLEX PRECISION array, dimension (N)   
 *          On the final return, V = A*W,  where  EST = norm(V)/norm(W)   
 *          (W is not returned).   
 *
 *   X      (input/output) COMPLEX PRECISION array, dimension (N)   
 *          On an intermediate return, X should be overwritten by   
 *                A * X,   if KASE=1,   
 *                A' * X,  if KASE=2,
 *          where A' is the conjugate transpose of A,
 *         and CLACON must be re-called with all the other parameters   
 *          unchanged.   
 *
 *
 *   EST    (output) FLOAT PRECISION   
 *          An estimate (a lower bound) for norm(A).   
 *
 *   KASE   (input/output) INT
 *          On the initial call to CLACON, KASE should be 0.   
 *          On an intermediate return, KASE will be 1 or 2, indicating   
 *          whether X should be overwritten by A * X  or A' * X.   
 *          On the final return from CLACON, KASE will again be 0.   
 *
 *   Further Details   
 *   ======= =======   
 *
 *   Contributed by Nick Higham, University of Manchester.   
 *   Originally named CONEST, dated March 16, 1988.   
 *
 *   Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of 
 *   a real or complex matrix, with applications to condition estimation", 
 *   ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.   
 *   ===================================================================== 
 * 
*/ int clacon_(int *n, complex *v, complex *x, float *est, int *kase) { /* Table of constant values */ int c__1 = 1; complex zero = {0.0, 0.0}; complex one = {1.0, 0.0}; /* System generated locals */ float d__1; /* Local variables */ static int jump; int jlast; int iter; float altsgn, estold; int i, j; float temp; float safmin; extern float slamch_(char *); extern int icmax1_slu(int *, complex *, int *); extern double scsum1_slu(int *, complex *, int *); safmin = slamch_("Safe minimum"); if ( *kase == 0 ) { for (i = 0; i < *n; ++i) { x[i].r = 1. / (float) (*n); x[i].i = 0.; } *kase = 1; jump = 1; return 0; } switch (jump) { case 1: goto L20; case 2: goto L40; case 3: goto L70; case 4: goto L110; case 5: goto L140; } /* ................ ENTRY (JUMP = 1) FIRST ITERATION. X HAS BEEN OVERWRITTEN BY A*X. */ L20: if (*n == 1) { v[0] = x[0]; *est = c_abs(&v[0]); /* ... QUIT */ goto L150; } *est = scsum1_slu(n, x, &c__1); for (i = 0; i < *n; ++i) { d__1 = c_abs(&x[i]); if (d__1 > safmin) { d__1 = 1 / d__1; x[i].r *= d__1; x[i].i *= d__1; } else { x[i] = one; } } *kase = 2; jump = 2; return 0; /* ................ ENTRY (JUMP = 2) FIRST ITERATION. X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X. */ L40: j = icmax1_slu(n, &x[0], &c__1); --j; iter = 2; /* MAIN LOOP - ITERATIONS 2,3,...,ITMAX. */ L50: for (i = 0; i < *n; ++i) x[i] = zero; x[j] = one; *kase = 1; jump = 3; return 0; /* ................ ENTRY (JUMP = 3) X HAS BEEN OVERWRITTEN BY A*X. */ L70: #ifdef _CRAY CCOPY(n, x, &c__1, v, &c__1); #else ccopy_(n, x, &c__1, v, &c__1); #endif estold = *est; *est = scsum1_slu(n, v, &c__1); L90: /* TEST FOR CYCLING. */ if (*est <= estold) goto L120; for (i = 0; i < *n; ++i) { d__1 = c_abs(&x[i]); if (d__1 > safmin) { d__1 = 1 / d__1; x[i].r *= d__1; x[i].i *= d__1; } else { x[i] = one; } } *kase = 2; jump = 4; return 0; /* ................ ENTRY (JUMP = 4) X HAS BEEN OVERWRITTEN BY TRANDPOSE(A)*X. */ L110: jlast = j; j = icmax1_slu(n, &x[0], &c__1); --j; if (x[jlast].r != (d__1 = x[j].r, fabs(d__1)) && iter < 5) { ++iter; goto L50; } /* ITERATION COMPLETE. FINAL STAGE. */ L120: altsgn = 1.; for (i = 1; i <= *n; ++i) { x[i-1].r = altsgn * ((float)(i - 1) / (float)(*n - 1) + 1.); x[i-1].i = 0.; altsgn = -altsgn; } *kase = 1; jump = 5; return 0; /* ................ ENTRY (JUMP = 5) X HAS BEEN OVERWRITTEN BY A*X. */ L140: temp = scsum1_slu(n, x, &c__1) / (float)(*n * 3) * 2.; if (temp > *est) { #ifdef _CRAY CCOPY(n, &x[0], &c__1, &v[0], &c__1); #else ccopy_(n, &x[0], &c__1, &v[0], &c__1); #endif *est = temp; } L150: *kase = 0; return 0; } /* clacon_ */