/*! \file Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from U.S. Dept. of Energy) All rights reserved. The source code is distributed under BSD license, see the file License.txt at the top-level directory. */ /*! @file cutil.c * \brief Matrix utility functions * *
 * -- SuperLU routine (version 3.1) --
 * Univ. of California Berkeley, Xerox Palo Alto Research Center,
 * and Lawrence Berkeley National Lab.
 * August 1, 2008
 *
 * Copyright (c) 1994 by Xerox Corporation.  All rights reserved.
 *
 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
 * EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
 * 
 * Permission is hereby granted to use or copy this program for any
 * purpose, provided the above notices are retained on all copies.
 * Permission to modify the code and to distribute modified code is
 * granted, provided the above notices are retained, and a notice that
 * the code was modified is included with the above copyright notice.
 * 
*/ #include #include "slu_cdefs.h" void cCreate_CompCol_Matrix(SuperMatrix *A, int m, int n, int nnz, complex *nzval, int *rowind, int *colptr, Stype_t stype, Dtype_t dtype, Mtype_t mtype) { NCformat *Astore; A->Stype = stype; A->Dtype = dtype; A->Mtype = mtype; A->nrow = m; A->ncol = n; A->Store = (void *) SUPERLU_MALLOC( sizeof(NCformat) ); if ( !(A->Store) ) ABORT("SUPERLU_MALLOC fails for A->Store"); Astore = A->Store; Astore->nnz = nnz; Astore->nzval = nzval; Astore->rowind = rowind; Astore->colptr = colptr; } void cCreate_CompRow_Matrix(SuperMatrix *A, int m, int n, int nnz, complex *nzval, int *colind, int *rowptr, Stype_t stype, Dtype_t dtype, Mtype_t mtype) { NRformat *Astore; A->Stype = stype; A->Dtype = dtype; A->Mtype = mtype; A->nrow = m; A->ncol = n; A->Store = (void *) SUPERLU_MALLOC( sizeof(NRformat) ); if ( !(A->Store) ) ABORT("SUPERLU_MALLOC fails for A->Store"); Astore = A->Store; Astore->nnz = nnz; Astore->nzval = nzval; Astore->colind = colind; Astore->rowptr = rowptr; } /*! \brief Copy matrix A into matrix B. */ void cCopy_CompCol_Matrix(SuperMatrix *A, SuperMatrix *B) { NCformat *Astore, *Bstore; int ncol, nnz, i; B->Stype = A->Stype; B->Dtype = A->Dtype; B->Mtype = A->Mtype; B->nrow = A->nrow;; B->ncol = ncol = A->ncol; Astore = (NCformat *) A->Store; Bstore = (NCformat *) B->Store; Bstore->nnz = nnz = Astore->nnz; for (i = 0; i < nnz; ++i) ((complex *)Bstore->nzval)[i] = ((complex *)Astore->nzval)[i]; for (i = 0; i < nnz; ++i) Bstore->rowind[i] = Astore->rowind[i]; for (i = 0; i <= ncol; ++i) Bstore->colptr[i] = Astore->colptr[i]; } void cCreate_Dense_Matrix(SuperMatrix *X, int m, int n, complex *x, int ldx, Stype_t stype, Dtype_t dtype, Mtype_t mtype) { DNformat *Xstore; X->Stype = stype; X->Dtype = dtype; X->Mtype = mtype; X->nrow = m; X->ncol = n; X->Store = (void *) SUPERLU_MALLOC( sizeof(DNformat) ); if ( !(X->Store) ) ABORT("SUPERLU_MALLOC fails for X->Store"); Xstore = (DNformat *) X->Store; Xstore->lda = ldx; Xstore->nzval = (complex *) x; } void cCopy_Dense_Matrix(int M, int N, complex *X, int ldx, complex *Y, int ldy) { /*! \brief Copies a two-dimensional matrix X to another matrix Y. */ int i, j; for (j = 0; j < N; ++j) for (i = 0; i < M; ++i) Y[i + j*ldy] = X[i + j*ldx]; } void cCreate_SuperNode_Matrix(SuperMatrix *L, int m, int n, int nnz, complex *nzval, int *nzval_colptr, int *rowind, int *rowind_colptr, int *col_to_sup, int *sup_to_col, Stype_t stype, Dtype_t dtype, Mtype_t mtype) { SCformat *Lstore; L->Stype = stype; L->Dtype = dtype; L->Mtype = mtype; L->nrow = m; L->ncol = n; L->Store = (void *) SUPERLU_MALLOC( sizeof(SCformat) ); if ( !(L->Store) ) ABORT("SUPERLU_MALLOC fails for L->Store"); Lstore = L->Store; Lstore->nnz = nnz; Lstore->nsuper = col_to_sup[n]; Lstore->nzval = nzval; Lstore->nzval_colptr = nzval_colptr; Lstore->rowind = rowind; Lstore->rowind_colptr = rowind_colptr; Lstore->col_to_sup = col_to_sup; Lstore->sup_to_col = sup_to_col; } /*! \brief Convert a row compressed storage into a column compressed storage. */ void cCompRow_to_CompCol(int m, int n, int nnz, complex *a, int *colind, int *rowptr, complex **at, int **rowind, int **colptr) { register int i, j, col, relpos; int *marker; /* Allocate storage for another copy of the matrix. */ *at = (complex *) complexMalloc(nnz); *rowind = (int *) intMalloc(nnz); *colptr = (int *) intMalloc(n+1); marker = (int *) intCalloc(n); /* Get counts of each column of A, and set up column pointers */ for (i = 0; i < m; ++i) for (j = rowptr[i]; j < rowptr[i+1]; ++j) ++marker[colind[j]]; (*colptr)[0] = 0; for (j = 0; j < n; ++j) { (*colptr)[j+1] = (*colptr)[j] + marker[j]; marker[j] = (*colptr)[j]; } /* Transfer the matrix into the compressed column storage. */ for (i = 0; i < m; ++i) { for (j = rowptr[i]; j < rowptr[i+1]; ++j) { col = colind[j]; relpos = marker[col]; (*rowind)[relpos] = i; (*at)[relpos] = a[j]; ++marker[col]; } } SUPERLU_FREE(marker); } void cPrint_CompCol_Matrix(char *what, SuperMatrix *A) { NCformat *Astore; register int i,n; float *dp; printf("\nCompCol matrix %s:\n", what); printf("Stype %d, Dtype %d, Mtype %d\n", A->Stype,A->Dtype,A->Mtype); n = A->ncol; Astore = (NCformat *) A->Store; dp = (float *) Astore->nzval; printf("nrow %d, ncol %d, nnz %d\n", A->nrow,A->ncol,Astore->nnz); printf("nzval: "); for (i = 0; i < 2*Astore->colptr[n]; ++i) printf("%f ", dp[i]); printf("\nrowind: "); for (i = 0; i < Astore->colptr[n]; ++i) printf("%d ", Astore->rowind[i]); printf("\ncolptr: "); for (i = 0; i <= n; ++i) printf("%d ", Astore->colptr[i]); printf("\n"); fflush(stdout); } void cPrint_SuperNode_Matrix(char *what, SuperMatrix *A) { SCformat *Astore; register int i, j, k, c, d, n, nsup; float *dp; int *col_to_sup, *sup_to_col, *rowind, *rowind_colptr; printf("\nSuperNode matrix %s:\n", what); printf("Stype %d, Dtype %d, Mtype %d\n", A->Stype,A->Dtype,A->Mtype); n = A->ncol; Astore = (SCformat *) A->Store; dp = (float *) Astore->nzval; col_to_sup = Astore->col_to_sup; sup_to_col = Astore->sup_to_col; rowind_colptr = Astore->rowind_colptr; rowind = Astore->rowind; printf("nrow %d, ncol %d, nnz %d, nsuper %d\n", A->nrow,A->ncol,Astore->nnz,Astore->nsuper); printf("nzval:\n"); for (k = 0; k <= Astore->nsuper; ++k) { c = sup_to_col[k]; nsup = sup_to_col[k+1] - c; for (j = c; j < c + nsup; ++j) { d = Astore->nzval_colptr[j]; for (i = rowind_colptr[c]; i < rowind_colptr[c+1]; ++i) { printf("%d\t%d\t%e\t%e\n", rowind[i], j, dp[d], dp[d+1]); d += 2; } } } #if 0 for (i = 0; i < 2*Astore->nzval_colptr[n]; ++i) printf("%f ", dp[i]); #endif printf("\nnzval_colptr: "); for (i = 0; i <= n; ++i) printf("%d ", Astore->nzval_colptr[i]); printf("\nrowind: "); for (i = 0; i < Astore->rowind_colptr[n]; ++i) printf("%d ", Astore->rowind[i]); printf("\nrowind_colptr: "); for (i = 0; i <= n; ++i) printf("%d ", Astore->rowind_colptr[i]); printf("\ncol_to_sup: "); for (i = 0; i < n; ++i) printf("%d ", col_to_sup[i]); printf("\nsup_to_col: "); for (i = 0; i <= Astore->nsuper+1; ++i) printf("%d ", sup_to_col[i]); printf("\n"); fflush(stdout); } void cPrint_Dense_Matrix(char *what, SuperMatrix *A) { DNformat *Astore = (DNformat *) A->Store; register int i, j, lda = Astore->lda; float *dp; printf("\nDense matrix %s:\n", what); printf("Stype %d, Dtype %d, Mtype %d\n", A->Stype,A->Dtype,A->Mtype); dp = (float *) Astore->nzval; printf("nrow %d, ncol %d, lda %d\n", A->nrow,A->ncol,lda); printf("\nnzval: "); for (j = 0; j < A->ncol; ++j) { for (i = 0; i < 2*A->nrow; ++i) printf("%f ", dp[i + j*2*lda]); printf("\n"); } printf("\n"); fflush(stdout); } /*! \brief Diagnostic print of column "jcol" in the U/L factor. */ void cprint_lu_col(char *msg, int jcol, int pivrow, int *xprune, GlobalLU_t *Glu) { int i, k, fsupc; int *xsup, *supno; int *xlsub, *lsub; complex *lusup; int *xlusup; complex *ucol; int *usub, *xusub; xsup = Glu->xsup; supno = Glu->supno; lsub = Glu->lsub; xlsub = Glu->xlsub; lusup = (complex *) Glu->lusup; xlusup = Glu->xlusup; ucol = (complex *) Glu->ucol; usub = Glu->usub; xusub = Glu->xusub; printf("%s", msg); printf("col %d: pivrow %d, supno %d, xprune %d\n", jcol, pivrow, supno[jcol], xprune[jcol]); printf("\tU-col:\n"); for (i = xusub[jcol]; i < xusub[jcol+1]; i++) printf("\t%d%10.4f, %10.4f\n", usub[i], ucol[i].r, ucol[i].i); printf("\tL-col in rectangular snode:\n"); fsupc = xsup[supno[jcol]]; /* first col of the snode */ i = xlsub[fsupc]; k = xlusup[jcol]; while ( i < xlsub[fsupc+1] && k < xlusup[jcol+1] ) { printf("\t%d\t%10.4f, %10.4f\n", lsub[i], lusup[k].r, lusup[k].i); i++; k++; } fflush(stdout); } /*! \brief Check whether tempv[] == 0. This should be true before and after calling any numeric routines, i.e., "panel_bmod" and "column_bmod". */ void ccheck_tempv(int n, complex *tempv) { int i; for (i = 0; i < n; i++) { if ((tempv[i].r != 0.0) || (tempv[i].i != 0.0)) { fprintf(stderr,"tempv[%d] = {%f, %f}\n", i, tempv[i].r, tempv[i].i); ABORT("ccheck_tempv"); } } } void cGenXtrue(int n, int nrhs, complex *x, int ldx) { int i, j; for (j = 0; j < nrhs; ++j) for (i = 0; i < n; ++i) { x[i + j*ldx].r = 1.0; x[i + j*ldx].i = 0.0; } } /*! \brief Let rhs[i] = sum of i-th row of A, so the solution vector is all 1's */ void cFillRHS(trans_t trans, int nrhs, complex *x, int ldx, SuperMatrix *A, SuperMatrix *B) { NCformat *Astore; complex *Aval; DNformat *Bstore; complex *rhs; complex one = {1.0, 0.0}; complex zero = {0.0, 0.0}; int ldc; char transc[1]; Astore = A->Store; Aval = (complex *) Astore->nzval; Bstore = B->Store; rhs = Bstore->nzval; ldc = Bstore->lda; if ( trans == NOTRANS ) *(unsigned char *)transc = 'N'; else *(unsigned char *)transc = 'T'; sp_cgemm(transc, "N", A->nrow, nrhs, A->ncol, one, A, x, ldx, zero, rhs, ldc); } /*! \brief Fills a complex precision array with a given value. */ void cfill(complex *a, int alen, complex dval) { register int i; for (i = 0; i < alen; i++) a[i] = dval; } /*! \brief Check the inf-norm of the error vector */ void cinf_norm_error(int nrhs, SuperMatrix *X, complex *xtrue) { DNformat *Xstore; float err, xnorm; complex *Xmat, *soln_work; complex temp; int i, j; Xstore = X->Store; Xmat = Xstore->nzval; for (j = 0; j < nrhs; j++) { soln_work = &Xmat[j*Xstore->lda]; err = xnorm = 0.0; for (i = 0; i < X->nrow; i++) { c_sub(&temp, &soln_work[i], &xtrue[i]); err = SUPERLU_MAX(err, c_abs(&temp)); xnorm = SUPERLU_MAX(xnorm, c_abs(&soln_work[i])); } err = err / xnorm; printf("||X - Xtrue||/||X|| = %e\n", err); } } /*! \brief Print performance of the code. */ void cPrintPerf(SuperMatrix *L, SuperMatrix *U, mem_usage_t *mem_usage, float rpg, float rcond, float *ferr, float *berr, char *equed, SuperLUStat_t *stat) { SCformat *Lstore; NCformat *Ustore; double *utime; flops_t *ops; utime = stat->utime; ops = stat->ops; if ( utime[FACT] != 0. ) printf("Factor flops = %e\tMflops = %8.2f\n", ops[FACT], ops[FACT]*1e-6/utime[FACT]); printf("Identify relaxed snodes = %8.2f\n", utime[RELAX]); if ( utime[SOLVE] != 0. ) printf("Solve flops = %.0f, Mflops = %8.2f\n", ops[SOLVE], ops[SOLVE]*1e-6/utime[SOLVE]); Lstore = (SCformat *) L->Store; Ustore = (NCformat *) U->Store; printf("\tNo of nonzeros in factor L = %d\n", Lstore->nnz); printf("\tNo of nonzeros in factor U = %d\n", Ustore->nnz); printf("\tNo of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz); printf("L\\U MB %.3f\ttotal MB needed %.3f\n", mem_usage->for_lu/1e6, mem_usage->total_needed/1e6); printf("Number of memory expansions: %d\n", stat->expansions); printf("\tFactor\tMflops\tSolve\tMflops\tEtree\tEquil\tRcond\tRefine\n"); printf("PERF:%8.2f%8.2f%8.2f%8.2f%8.2f%8.2f%8.2f%8.2f\n", utime[FACT], ops[FACT]*1e-6/utime[FACT], utime[SOLVE], ops[SOLVE]*1e-6/utime[SOLVE], utime[ETREE], utime[EQUIL], utime[RCOND], utime[REFINE]); printf("\tRpg\t\tRcond\t\tFerr\t\tBerr\t\tEquil?\n"); printf("NUM:\t%e\t%e\t%e\t%e\t%s\n", rpg, rcond, ferr[0], berr[0], equed); } print_complex_vec(char *what, int n, complex *vec) { int i; printf("%s: n %d\n", what, n); for (i = 0; i < n; ++i) printf("%d\t%f%f\n", i, vec[i].r, vec[i].i); return 0; }