/*! \file Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from U.S. Dept. of Energy) All rights reserved. The source code is distributed under BSD license, see the file License.txt at the top-level directory. */ /*! @file dmyblas2.c * \brief Level 2 Blas operations * *
 * -- SuperLU routine (version 2.0) --
 * Univ. of California Berkeley, Xerox Palo Alto Research Center,
 * and Lawrence Berkeley National Lab.
 * November 15, 1997
 * 
* Purpose: * Level 2 BLAS operations: solves and matvec, written in C. * Note: * This is only used when the system lacks an efficient BLAS library. * */ /* * File name: dmyblas2.c */ /*! \brief Solves a dense UNIT lower triangular system * * The unit lower * triangular matrix is stored in a 2D array M(1:nrow,1:ncol). * The solution will be returned in the rhs vector. */ void dlsolve ( int ldm, int ncol, double *M, double *rhs ) { int k; double x0, x1, x2, x3, x4, x5, x6, x7; double *M0; register double *Mki0, *Mki1, *Mki2, *Mki3, *Mki4, *Mki5, *Mki6, *Mki7; register int firstcol = 0; M0 = &M[0]; while ( firstcol < ncol - 7 ) { /* Do 8 columns */ Mki0 = M0 + 1; Mki1 = Mki0 + ldm + 1; Mki2 = Mki1 + ldm + 1; Mki3 = Mki2 + ldm + 1; Mki4 = Mki3 + ldm + 1; Mki5 = Mki4 + ldm + 1; Mki6 = Mki5 + ldm + 1; Mki7 = Mki6 + ldm + 1; x0 = rhs[firstcol]; x1 = rhs[firstcol+1] - x0 * *Mki0++; x2 = rhs[firstcol+2] - x0 * *Mki0++ - x1 * *Mki1++; x3 = rhs[firstcol+3] - x0 * *Mki0++ - x1 * *Mki1++ - x2 * *Mki2++; x4 = rhs[firstcol+4] - x0 * *Mki0++ - x1 * *Mki1++ - x2 * *Mki2++ - x3 * *Mki3++; x5 = rhs[firstcol+5] - x0 * *Mki0++ - x1 * *Mki1++ - x2 * *Mki2++ - x3 * *Mki3++ - x4 * *Mki4++; x6 = rhs[firstcol+6] - x0 * *Mki0++ - x1 * *Mki1++ - x2 * *Mki2++ - x3 * *Mki3++ - x4 * *Mki4++ - x5 * *Mki5++; x7 = rhs[firstcol+7] - x0 * *Mki0++ - x1 * *Mki1++ - x2 * *Mki2++ - x3 * *Mki3++ - x4 * *Mki4++ - x5 * *Mki5++ - x6 * *Mki6++; rhs[++firstcol] = x1; rhs[++firstcol] = x2; rhs[++firstcol] = x3; rhs[++firstcol] = x4; rhs[++firstcol] = x5; rhs[++firstcol] = x6; rhs[++firstcol] = x7; ++firstcol; for (k = firstcol; k < ncol; k++) rhs[k] = rhs[k] - x0 * *Mki0++ - x1 * *Mki1++ - x2 * *Mki2++ - x3 * *Mki3++ - x4 * *Mki4++ - x5 * *Mki5++ - x6 * *Mki6++ - x7 * *Mki7++; M0 += 8 * ldm + 8; } while ( firstcol < ncol - 3 ) { /* Do 4 columns */ Mki0 = M0 + 1; Mki1 = Mki0 + ldm + 1; Mki2 = Mki1 + ldm + 1; Mki3 = Mki2 + ldm + 1; x0 = rhs[firstcol]; x1 = rhs[firstcol+1] - x0 * *Mki0++; x2 = rhs[firstcol+2] - x0 * *Mki0++ - x1 * *Mki1++; x3 = rhs[firstcol+3] - x0 * *Mki0++ - x1 * *Mki1++ - x2 * *Mki2++; rhs[++firstcol] = x1; rhs[++firstcol] = x2; rhs[++firstcol] = x3; ++firstcol; for (k = firstcol; k < ncol; k++) rhs[k] = rhs[k] - x0 * *Mki0++ - x1 * *Mki1++ - x2 * *Mki2++ - x3 * *Mki3++; M0 += 4 * ldm + 4; } if ( firstcol < ncol - 1 ) { /* Do 2 columns */ Mki0 = M0 + 1; Mki1 = Mki0 + ldm + 1; x0 = rhs[firstcol]; x1 = rhs[firstcol+1] - x0 * *Mki0++; rhs[++firstcol] = x1; ++firstcol; for (k = firstcol; k < ncol; k++) rhs[k] = rhs[k] - x0 * *Mki0++ - x1 * *Mki1++; } } /*! \brief Solves a dense upper triangular system * * The upper triangular matrix is * stored in a 2-dim array M(1:ldm,1:ncol). The solution will be returned * in the rhs vector. */ void dusolve ( ldm, ncol, M, rhs ) int ldm; /* in */ int ncol; /* in */ double *M; /* in */ double *rhs; /* modified */ { double xj; int jcol, j, irow; jcol = ncol - 1; for (j = 0; j < ncol; j++) { xj = rhs[jcol] / M[jcol + jcol*ldm]; /* M(jcol, jcol) */ rhs[jcol] = xj; for (irow = 0; irow < jcol; irow++) rhs[irow] -= xj * M[irow + jcol*ldm]; /* M(irow, jcol) */ jcol--; } } /*! \brief Performs a dense matrix-vector multiply: Mxvec = Mxvec + M * vec. * * The input matrix is M(1:nrow,1:ncol); The product is returned in Mxvec[]. */ void dmatvec ( ldm, nrow, ncol, M, vec, Mxvec ) int ldm; /* in -- leading dimension of M */ int nrow; /* in */ int ncol; /* in */ double *M; /* in */ double *vec; /* in */ double *Mxvec; /* in/out */ { double vi0, vi1, vi2, vi3, vi4, vi5, vi6, vi7; double *M0; register double *Mki0, *Mki1, *Mki2, *Mki3, *Mki4, *Mki5, *Mki6, *Mki7; register int firstcol = 0; int k; M0 = &M[0]; while ( firstcol < ncol - 7 ) { /* Do 8 columns */ Mki0 = M0; Mki1 = Mki0 + ldm; Mki2 = Mki1 + ldm; Mki3 = Mki2 + ldm; Mki4 = Mki3 + ldm; Mki5 = Mki4 + ldm; Mki6 = Mki5 + ldm; Mki7 = Mki6 + ldm; vi0 = vec[firstcol++]; vi1 = vec[firstcol++]; vi2 = vec[firstcol++]; vi3 = vec[firstcol++]; vi4 = vec[firstcol++]; vi5 = vec[firstcol++]; vi6 = vec[firstcol++]; vi7 = vec[firstcol++]; for (k = 0; k < nrow; k++) Mxvec[k] += vi0 * *Mki0++ + vi1 * *Mki1++ + vi2 * *Mki2++ + vi3 * *Mki3++ + vi4 * *Mki4++ + vi5 * *Mki5++ + vi6 * *Mki6++ + vi7 * *Mki7++; M0 += 8 * ldm; } while ( firstcol < ncol - 3 ) { /* Do 4 columns */ Mki0 = M0; Mki1 = Mki0 + ldm; Mki2 = Mki1 + ldm; Mki3 = Mki2 + ldm; vi0 = vec[firstcol++]; vi1 = vec[firstcol++]; vi2 = vec[firstcol++]; vi3 = vec[firstcol++]; for (k = 0; k < nrow; k++) Mxvec[k] += vi0 * *Mki0++ + vi1 * *Mki1++ + vi2 * *Mki2++ + vi3 * *Mki3++ ; M0 += 4 * ldm; } while ( firstcol < ncol ) { /* Do 1 column */ Mki0 = M0; vi0 = vec[firstcol++]; for (k = 0; k < nrow; k++) Mxvec[k] += vi0 * *Mki0++; M0 += ldm; } }