/*! \file Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from U.S. Dept. of Energy) All rights reserved. The source code is distributed under BSD license, see the file License.txt at the top-level directory. */ /*! @file ssp_blas2.c * \brief Sparse BLAS 2, using some dense BLAS 2 operations * *
* -- SuperLU routine (version 5.1) -- * Univ. of California Berkeley, Xerox Palo Alto Research Center, * and Lawrence Berkeley National Lab. * October 15, 2003 * * Last update: December 3, 2015 **/ /* * File name: ssp_blas2.c * Purpose: Sparse BLAS 2, using some dense BLAS 2 operations. */ #include "slu_sdefs.h" /* * Function prototypes */ void susolve(int, int, float*, float*); void slsolve(int, int, float*, float*); void smatvec(int, int, int, float*, float*, float*); /*! \brief Solves one of the systems of equations A*x = b, or A'*x = b * *
* Purpose * ======= * * sp_strsv() solves one of the systems of equations * A*x = b, or A'*x = b, * where b and x are n element vectors and A is a sparse unit , or * non-unit, upper or lower triangular matrix. * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. * * Parameters * ========== * * uplo - (input) char* * On entry, uplo specifies whether the matrix is an upper or * lower triangular matrix as follows: * uplo = 'U' or 'u' A is an upper triangular matrix. * uplo = 'L' or 'l' A is a lower triangular matrix. * * trans - (input) char* * On entry, trans specifies the equations to be solved as * follows: * trans = 'N' or 'n' A*x = b. * trans = 'T' or 't' A'*x = b. * trans = 'C' or 'c' A'*x = b. * * diag - (input) char* * On entry, diag specifies whether or not A is unit * triangular as follows: * diag = 'U' or 'u' A is assumed to be unit triangular. * diag = 'N' or 'n' A is not assumed to be unit * triangular. * * L - (input) SuperMatrix* * The factor L from the factorization Pr*A*Pc=L*U. Use * compressed row subscripts storage for supernodes, * i.e., L has types: Stype = SC, Dtype = SLU_S, Mtype = TRLU. * * U - (input) SuperMatrix* * The factor U from the factorization Pr*A*Pc=L*U. * U has types: Stype = NC, Dtype = SLU_S, Mtype = TRU. * * x - (input/output) float* * Before entry, the incremented array X must contain the n * element right-hand side vector b. On exit, X is overwritten * with the solution vector x. * * info - (output) int* * If *info = -i, the i-th argument had an illegal value. **/ int sp_strsv(char *uplo, char *trans, char *diag, SuperMatrix *L, SuperMatrix *U, float *x, SuperLUStat_t *stat, int *info) { #ifdef _CRAY _fcd ftcs1 = _cptofcd("L", strlen("L")), ftcs2 = _cptofcd("N", strlen("N")), ftcs3 = _cptofcd("U", strlen("U")); #endif SCformat *Lstore; NCformat *Ustore; float *Lval, *Uval; int incx = 1, incy = 1; float alpha = 1.0, beta = 1.0; int nrow; int fsupc, nsupr, nsupc, luptr, istart, irow; int i, k, iptr, jcol; float *work; flops_t solve_ops; /* Test the input parameters */ *info = 0; if ( strncmp(uplo,"L", 1)!=0 && strncmp(uplo, "U", 1)!=0 ) *info = -1; else if ( strncmp(trans, "N", 1)!=0 && strncmp(trans, "T", 1)!=0 && strncmp(trans, "C", 1)!=0) *info = -2; else if ( strncmp(diag, "U", 1)!=0 && strncmp(diag, "N", 1)!=0 ) *info = -3; else if ( L->nrow != L->ncol || L->nrow < 0 ) *info = -4; else if ( U->nrow != U->ncol || U->nrow < 0 ) *info = -5; if ( *info ) { i = -(*info); input_error("sp_strsv", &i); return 0; } Lstore = L->Store; Lval = Lstore->nzval; Ustore = U->Store; Uval = Ustore->nzval; solve_ops = 0; if ( !(work = floatCalloc(L->nrow)) ) ABORT("Malloc fails for work in sp_strsv()."); if ( strncmp(trans, "N", 1)==0 ) { /* Form x := inv(A)*x. */ if ( strncmp(uplo, "L", 1)==0 ) { /* Form x := inv(L)*x */ if ( L->nrow == 0 ) return 0; /* Quick return */ for (k = 0; k <= Lstore->nsuper; k++) { fsupc = L_FST_SUPC(k); istart = L_SUB_START(fsupc); nsupr = L_SUB_START(fsupc+1) - istart; nsupc = L_FST_SUPC(k+1) - fsupc; luptr = L_NZ_START(fsupc); nrow = nsupr - nsupc; solve_ops += nsupc * (nsupc - 1); solve_ops += 2 * nrow * nsupc; if ( nsupc == 1 ) { for (iptr=istart+1; iptr < L_SUB_START(fsupc+1); ++iptr) { irow = L_SUB(iptr); ++luptr; x[irow] -= x[fsupc] * Lval[luptr]; } } else { #ifdef USE_VENDOR_BLAS #ifdef _CRAY STRSV(ftcs1, ftcs2, ftcs3, &nsupc, &Lval[luptr], &nsupr, &x[fsupc], &incx); SGEMV(ftcs2, &nrow, &nsupc, &alpha, &Lval[luptr+nsupc], &nsupr, &x[fsupc], &incx, &beta, &work[0], &incy); #else strsv_("L", "N", "U", &nsupc, &Lval[luptr], &nsupr, &x[fsupc], &incx); sgemv_("N", &nrow, &nsupc, &alpha, &Lval[luptr+nsupc], &nsupr, &x[fsupc], &incx, &beta, &work[0], &incy); #endif #else slsolve ( nsupr, nsupc, &Lval[luptr], &x[fsupc]); smatvec ( nsupr, nsupr-nsupc, nsupc, &Lval[luptr+nsupc], &x[fsupc], &work[0] ); #endif iptr = istart + nsupc; for (i = 0; i < nrow; ++i, ++iptr) { irow = L_SUB(iptr); x[irow] -= work[i]; /* Scatter */ work[i] = 0.0; } } } /* for k ... */ } else { /* Form x := inv(U)*x */ if ( U->nrow == 0 ) return 0; /* Quick return */ for (k = Lstore->nsuper; k >= 0; k--) { fsupc = L_FST_SUPC(k); nsupr = L_SUB_START(fsupc+1) - L_SUB_START(fsupc); nsupc = L_FST_SUPC(k+1) - fsupc; luptr = L_NZ_START(fsupc); solve_ops += nsupc * (nsupc + 1); if ( nsupc == 1 ) { x[fsupc] /= Lval[luptr]; for (i = U_NZ_START(fsupc); i < U_NZ_START(fsupc+1); ++i) { irow = U_SUB(i); x[irow] -= x[fsupc] * Uval[i]; } } else { #ifdef USE_VENDOR_BLAS #ifdef _CRAY STRSV(ftcs3, ftcs2, ftcs2, &nsupc, &Lval[luptr], &nsupr, &x[fsupc], &incx); #else strsv_("U", "N", "N", &nsupc, &Lval[luptr], &nsupr, &x[fsupc], &incx); #endif #else susolve ( nsupr, nsupc, &Lval[luptr], &x[fsupc] ); #endif for (jcol = fsupc; jcol < L_FST_SUPC(k+1); jcol++) { solve_ops += 2*(U_NZ_START(jcol+1) - U_NZ_START(jcol)); for (i = U_NZ_START(jcol); i < U_NZ_START(jcol+1); i++) { irow = U_SUB(i); x[irow] -= x[jcol] * Uval[i]; } } } } /* for k ... */ } } else { /* Form x := inv(A')*x */ if ( strncmp(uplo, "L", 1)==0 ) { /* Form x := inv(L')*x */ if ( L->nrow == 0 ) return 0; /* Quick return */ for (k = Lstore->nsuper; k >= 0; --k) { fsupc = L_FST_SUPC(k); istart = L_SUB_START(fsupc); nsupr = L_SUB_START(fsupc+1) - istart; nsupc = L_FST_SUPC(k+1) - fsupc; luptr = L_NZ_START(fsupc); solve_ops += 2 * (nsupr - nsupc) * nsupc; for (jcol = fsupc; jcol < L_FST_SUPC(k+1); jcol++) { iptr = istart + nsupc; for (i = L_NZ_START(jcol) + nsupc; i < L_NZ_START(jcol+1); i++) { irow = L_SUB(iptr); x[jcol] -= x[irow] * Lval[i]; iptr++; } } if ( nsupc > 1 ) { solve_ops += nsupc * (nsupc - 1); #ifdef _CRAY ftcs1 = _cptofcd("L", strlen("L")); ftcs2 = _cptofcd("T", strlen("T")); ftcs3 = _cptofcd("U", strlen("U")); STRSV(ftcs1, ftcs2, ftcs3, &nsupc, &Lval[luptr], &nsupr, &x[fsupc], &incx); #else strsv_("L", "T", "U", &nsupc, &Lval[luptr], &nsupr, &x[fsupc], &incx); #endif } } } else { /* Form x := inv(U')*x */ if ( U->nrow == 0 ) return 0; /* Quick return */ for (k = 0; k <= Lstore->nsuper; k++) { fsupc = L_FST_SUPC(k); nsupr = L_SUB_START(fsupc+1) - L_SUB_START(fsupc); nsupc = L_FST_SUPC(k+1) - fsupc; luptr = L_NZ_START(fsupc); for (jcol = fsupc; jcol < L_FST_SUPC(k+1); jcol++) { solve_ops += 2*(U_NZ_START(jcol+1) - U_NZ_START(jcol)); for (i = U_NZ_START(jcol); i < U_NZ_START(jcol+1); i++) { irow = U_SUB(i); x[jcol] -= x[irow] * Uval[i]; } } solve_ops += nsupc * (nsupc + 1); if ( nsupc == 1 ) { x[fsupc] /= Lval[luptr]; } else { #ifdef _CRAY ftcs1 = _cptofcd("U", strlen("U")); ftcs2 = _cptofcd("T", strlen("T")); ftcs3 = _cptofcd("N", strlen("N")); STRSV( ftcs1, ftcs2, ftcs3, &nsupc, &Lval[luptr], &nsupr, &x[fsupc], &incx); #else strsv_("U", "T", "N", &nsupc, &Lval[luptr], &nsupr, &x[fsupc], &incx); #endif } } /* for k ... */ } } stat->ops[SOLVE] += solve_ops; SUPERLU_FREE(work); return 0; } /*! \brief Performs one of the matrix-vector operations y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, * *
* Purpose * ======= * * sp_sgemv() performs one of the matrix-vector operations * y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, * where alpha and beta are scalars, x and y are vectors and A is a * sparse A->nrow by A->ncol matrix. * * Parameters * ========== * * TRANS - (input) char* * On entry, TRANS specifies the operation to be performed as * follows: * TRANS = 'N' or 'n' y := alpha*A*x + beta*y. * TRANS = 'T' or 't' y := alpha*A'*x + beta*y. * TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. * * ALPHA - (input) float * On entry, ALPHA specifies the scalar alpha. * * A - (input) SuperMatrix* * Matrix A with a sparse format, of dimension (A->nrow, A->ncol). * Currently, the type of A can be: * Stype = NC or NCP; Dtype = SLU_S; Mtype = GE. * In the future, more general A can be handled. * * X - (input) float*, array of DIMENSION at least * ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. * Before entry, the incremented array X must contain the * vector x. * * INCX - (input) int * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * * BETA - (input) float * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * * Y - (output) float*, array of DIMENSION at least * ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. * Before entry with BETA non-zero, the incremented array Y * must contain the vector y. On exit, Y is overwritten by the * updated vector y. * * INCY - (input) int * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * * ==== Sparse Level 2 Blas routine. **/ int sp_sgemv(char *trans, float alpha, SuperMatrix *A, float *x, int incx, float beta, float *y, int incy) { /* Local variables */ NCformat *Astore; float *Aval; int info; float temp; int lenx, leny, i, j, irow; int iy, jx, jy, kx, ky; int notran; notran = ( strncmp(trans, "N", 1)==0 || strncmp(trans, "n", 1)==0 ); Astore = A->Store; Aval = Astore->nzval; /* Test the input parameters */ info = 0; if ( !notran && strncmp(trans, "T", 1)!=0 && strncmp(trans, "C", 1)!=0 ) info = 1; else if ( A->nrow < 0 || A->ncol < 0 ) info = 3; else if (incx == 0) info = 5; else if (incy == 0) info = 8; if (info != 0) { input_error("sp_sgemv ", &info); return 0; } /* Quick return if possible. */ if (A->nrow == 0 || A->ncol == 0 || (alpha == 0. && beta == 1.)) return 0; /* Set LENX and LENY, the lengths of the vectors x and y, and set up the start points in X and Y. */ if (strncmp(trans, "N", 1)==0) { lenx = A->ncol; leny = A->nrow; } else { lenx = A->nrow; leny = A->ncol; } if (incx > 0) kx = 0; else kx = - (lenx - 1) * incx; if (incy > 0) ky = 0; else ky = - (leny - 1) * incy; /* Start the operations. In this version the elements of A are accessed sequentially with one pass through A. */ /* First form y := beta*y. */ if (beta != 1.) { if (incy == 1) { if (beta == 0.) for (i = 0; i < leny; ++i) y[i] = 0.; else for (i = 0; i < leny; ++i) y[i] = beta * y[i]; } else { iy = ky; if (beta == 0.) for (i = 0; i < leny; ++i) { y[iy] = 0.; iy += incy; } else for (i = 0; i < leny; ++i) { y[iy] = beta * y[iy]; iy += incy; } } } if (alpha == 0.) return 0; if ( notran ) { /* Form y := alpha*A*x + y. */ jx = kx; if (incy == 1) { for (j = 0; j < A->ncol; ++j) { if (x[jx] != 0.) { temp = alpha * x[jx]; for (i = Astore->colptr[j]; i < Astore->colptr[j+1]; ++i) { irow = Astore->rowind[i]; y[irow] += temp * Aval[i]; } } jx += incx; } } else { ABORT("Not implemented."); } } else { /* Form y := alpha*A'*x + y. */ jy = ky; if (incx == 1) { for (j = 0; j < A->ncol; ++j) { temp = 0.; for (i = Astore->colptr[j]; i < Astore->colptr[j+1]; ++i) { irow = Astore->rowind[i]; temp += Aval[i] * x[irow]; } y[jy] += alpha * temp; jy += incy; } } else { ABORT("Not implemented."); } } return 0; } /* sp_sgemv */