/*! \file Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from U.S. Dept. of Energy) All rights reserved. The source code is distributed under BSD license, see the file License.txt at the top-level directory. */ /*! @file util.c * \brief Utility functions * *
 * -- SuperLU routine (version 4.1) --
 * Univ. of California Berkeley, Xerox Palo Alto Research Center,
 * and Lawrence Berkeley National Lab.
 * November, 2010
 *
 * Copyright (c) 1994 by Xerox Corporation.  All rights reserved.
 *
 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
 * EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
 *
 * Permission is hereby granted to use or copy this program for any
 * purpose, provided the above notices are retained on all copies.
 * Permission to modify the code and to distribute modified code is
 * granted, provided the above notices are retained, and a notice that
 * the code was modified is included with the above copyright notice.
 * 
*/ #include #include "slu_ddefs.h" /*! \brief Global statistics variale */ void superlu_abort_and_exit(char* msg) { fprintf(stderr, "%s", msg); exit (-1); } /*! \brief Set the default values for the options argument. */ void set_default_options(superlu_options_t *options) { options->Fact = DOFACT; options->Equil = YES; options->ColPerm = COLAMD; options->Trans = NOTRANS; options->IterRefine = NOREFINE; options->DiagPivotThresh = 1.0; options->SymmetricMode = NO; options->PivotGrowth = NO; options->ConditionNumber = NO; options->PrintStat = YES; } /*! \brief Set the default values for the options argument for ILU. */ void ilu_set_default_options(superlu_options_t *options) { set_default_options(options); /* further options for incomplete factorization */ options->DiagPivotThresh = 0.1; options->RowPerm = LargeDiag; options->ILU_DropRule = DROP_BASIC | DROP_AREA; options->ILU_DropTol = 1e-4; options->ILU_FillFactor = 10.0; options->ILU_Norm = INF_NORM; options->ILU_MILU = SILU; options->ILU_MILU_Dim = 3.0; /* -log(n)/log(h) is perfect */ options->ILU_FillTol = 1e-2; } /*! \brief Print the options setting. */ void print_options(superlu_options_t *options) { printf(".. options:\n"); printf("\tFact\t %8d\n", options->Fact); printf("\tEquil\t %8d\n", options->Equil); printf("\tColPerm\t %8d\n", options->ColPerm); printf("\tDiagPivotThresh %8.4f\n", options->DiagPivotThresh); printf("\tTrans\t %8d\n", options->Trans); printf("\tIterRefine\t%4d\n", options->IterRefine); printf("\tSymmetricMode\t%4d\n", options->SymmetricMode); printf("\tPivotGrowth\t%4d\n", options->PivotGrowth); printf("\tConditionNumber\t%4d\n", options->ConditionNumber); printf("..\n"); } /*! \brief Print the options setting. */ void print_ilu_options(superlu_options_t *options) { printf(".. ILU options:\n"); printf("\tDiagPivotThresh\t%6.2e\n", options->DiagPivotThresh); printf("\ttau\t%6.2e\n", options->ILU_DropTol); printf("\tgamma\t%6.2f\n", options->ILU_FillFactor); printf("\tDropRule\t%0x\n", options->ILU_DropRule); printf("\tMILU\t%d\n", options->ILU_MILU); printf("\tMILU_ALPHA\t%6.2e\n", MILU_ALPHA); printf("\tDiagFillTol\t%6.2e\n", options->ILU_FillTol); printf("..\n"); } /*! \brief Deallocate the structure pointing to the actual storage of the matrix. */ void Destroy_SuperMatrix_Store(SuperMatrix *A) { SUPERLU_FREE ( A->Store ); } void Destroy_CompCol_Matrix(SuperMatrix *A) { SUPERLU_FREE( ((NCformat *)A->Store)->rowind ); SUPERLU_FREE( ((NCformat *)A->Store)->colptr ); SUPERLU_FREE( ((NCformat *)A->Store)->nzval ); SUPERLU_FREE( A->Store ); } void Destroy_CompRow_Matrix(SuperMatrix *A) { SUPERLU_FREE( ((NRformat *)A->Store)->colind ); SUPERLU_FREE( ((NRformat *)A->Store)->rowptr ); SUPERLU_FREE( ((NRformat *)A->Store)->nzval ); SUPERLU_FREE( A->Store ); } void Destroy_SuperNode_Matrix(SuperMatrix *A) { SUPERLU_FREE ( ((SCformat *)A->Store)->rowind ); SUPERLU_FREE ( ((SCformat *)A->Store)->rowind_colptr ); SUPERLU_FREE ( ((SCformat *)A->Store)->nzval ); SUPERLU_FREE ( ((SCformat *)A->Store)->nzval_colptr ); SUPERLU_FREE ( ((SCformat *)A->Store)->col_to_sup ); SUPERLU_FREE ( ((SCformat *)A->Store)->sup_to_col ); SUPERLU_FREE ( A->Store ); } /*! \brief A is of type Stype==NCP */ void Destroy_CompCol_Permuted(SuperMatrix *A) { SUPERLU_FREE ( ((NCPformat *)A->Store)->colbeg ); SUPERLU_FREE ( ((NCPformat *)A->Store)->colend ); SUPERLU_FREE ( A->Store ); } /*! \brief A is of type Stype==DN */ void Destroy_Dense_Matrix(SuperMatrix *A) { DNformat* Astore = A->Store; SUPERLU_FREE (Astore->nzval); SUPERLU_FREE ( A->Store ); } /*! \brief Reset repfnz[] for the current column */ void resetrep_col (const int nseg, const int *segrep, int *repfnz) { int i, irep; for (i = 0; i < nseg; i++) { irep = segrep[i]; repfnz[irep] = EMPTY; } } /*! \brief Count the total number of nonzeros in factors L and U, and in the symmetrically reduced L. */ void countnz(const int n, int *xprune, int *nnzL, int *nnzU, GlobalLU_t *Glu) { int nsuper, fsupc, i, j; int nnzL0, jlen, irep; int *xsup, *xlsub; xsup = Glu->xsup; xlsub = Glu->xlsub; *nnzL = 0; *nnzU = (Glu->xusub)[n]; nnzL0 = 0; nsuper = (Glu->supno)[n]; if ( n <= 0 ) return; /* * For each supernode */ for (i = 0; i <= nsuper; i++) { fsupc = xsup[i]; jlen = xlsub[fsupc+1] - xlsub[fsupc]; for (j = fsupc; j < xsup[i+1]; j++) { *nnzL += jlen; *nnzU += j - fsupc + 1; jlen--; } irep = xsup[i+1] - 1; nnzL0 += xprune[irep] - xlsub[irep]; } /* printf("\tNo of nonzeros in symm-reduced L = %d\n", nnzL0);*/ } /*! \brief Count the total number of nonzeros in factors L and U. */ void ilu_countnz(const int n, int *nnzL, int *nnzU, GlobalLU_t *Glu) { int nsuper, fsupc, i, j; int jlen, irep; int *xsup, *xlsub; xsup = Glu->xsup; xlsub = Glu->xlsub; *nnzL = 0; *nnzU = (Glu->xusub)[n]; nsuper = (Glu->supno)[n]; if ( n <= 0 ) return; /* * For each supernode */ for (i = 0; i <= nsuper; i++) { fsupc = xsup[i]; jlen = xlsub[fsupc+1] - xlsub[fsupc]; for (j = fsupc; j < xsup[i+1]; j++) { *nnzL += jlen; *nnzU += j - fsupc + 1; jlen--; } irep = xsup[i+1] - 1; } } /*! \brief Fix up the data storage lsub for L-subscripts. It removes the subscript sets for structural pruning, and applies permuation to the remaining subscripts. */ void fixupL(const int n, const int *perm_r, GlobalLU_t *Glu) { register int nsuper, fsupc, nextl, i, j, k, jstrt; int *xsup, *lsub, *xlsub; if ( n <= 1 ) return; xsup = Glu->xsup; lsub = Glu->lsub; xlsub = Glu->xlsub; nextl = 0; nsuper = (Glu->supno)[n]; /* * For each supernode ... */ for (i = 0; i <= nsuper; i++) { fsupc = xsup[i]; jstrt = xlsub[fsupc]; xlsub[fsupc] = nextl; for (j = jstrt; j < xlsub[fsupc+1]; j++) { lsub[nextl] = perm_r[lsub[j]]; /* Now indexed into P*A */ nextl++; } for (k = fsupc+1; k < xsup[i+1]; k++) xlsub[k] = nextl; /* Other columns in supernode i */ } xlsub[n] = nextl; } /*! \brief Diagnostic print of segment info after panel_dfs(). */ void print_panel_seg(int n, int w, int jcol, int nseg, int *segrep, int *repfnz) { int j, k; for (j = jcol; j < jcol+w; j++) { printf("\tcol %d:\n", j); for (k = 0; k < nseg; k++) printf("\t\tseg %d, segrep %d, repfnz %d\n", k, segrep[k], repfnz[(j-jcol)*n + segrep[k]]); } } void StatInit(SuperLUStat_t *stat) { register int i, w, panel_size, relax; panel_size = sp_ienv(1); relax = sp_ienv(2); w = SUPERLU_MAX(panel_size, relax); stat->panel_histo = intCalloc(w+1); stat->utime = (double *) SUPERLU_MALLOC(NPHASES * sizeof(double)); if (!stat->utime) ABORT("SUPERLU_MALLOC fails for stat->utime"); stat->ops = (flops_t *) SUPERLU_MALLOC(NPHASES * sizeof(flops_t)); if (!stat->ops) ABORT("SUPERLU_MALLOC fails for stat->ops"); for (i = 0; i < NPHASES; ++i) { stat->utime[i] = 0.; stat->ops[i] = 0.; } stat->TinyPivots = 0; stat->RefineSteps = 0; stat->expansions = 0; #if ( PRNTlevel >= 1 ) printf(".. parameters in sp_ienv():\n"); printf("\t 1: panel size \t %4d \n" "\t 2: relax \t %4d \n" "\t 3: max. super \t %4d \n" "\t 4: row-dim 2D \t %4d \n" "\t 5: col-dim 2D \t %4d \n" "\t 6: fill ratio \t %4d \n", sp_ienv(1), sp_ienv(2), sp_ienv(3), sp_ienv(4), sp_ienv(5), sp_ienv(6)); #endif } void StatPrint(SuperLUStat_t *stat) { double *utime; flops_t *ops; utime = stat->utime; ops = stat->ops; printf("Factor time = %8.2f\n", utime[FACT]); if ( utime[FACT] != 0.0 ) printf("Factor flops = %e\tMflops = %8.2f\n", ops[FACT], ops[FACT]*1e-6/utime[FACT]); printf("Solve time = %8.2f\n", utime[SOLVE]); if ( utime[SOLVE] != 0.0 ) printf("Solve flops = %e\tMflops = %8.2f\n", ops[SOLVE], ops[SOLVE]*1e-6/utime[SOLVE]); printf("Number of memory expansions: %d\n", stat->expansions); } void StatFree(SuperLUStat_t *stat) { SUPERLU_FREE(stat->panel_histo); SUPERLU_FREE(stat->utime); SUPERLU_FREE(stat->ops); } flops_t LUFactFlops(SuperLUStat_t *stat) { return (stat->ops[FACT]); } flops_t LUSolveFlops(SuperLUStat_t *stat) { return (stat->ops[SOLVE]); } /*! \brief Fills an integer array with a given value. */ void ifill(int *a, int alen, int ival) { register int i; for (i = 0; i < alen; i++) a[i] = ival; } /*! \brief Get the statistics of the supernodes */ #define NBUCKS 10 void super_stats(int nsuper, int *xsup) { register int nsup1 = 0; int i, isize, whichb, bl, bh; int bucket[NBUCKS]; int max_sup_size = 0; for (i = 0; i <= nsuper; i++) { isize = xsup[i+1] - xsup[i]; if ( isize == 1 ) nsup1++; if ( max_sup_size < isize ) max_sup_size = isize; } printf(" Supernode statistics:\n\tno of super = %d\n", nsuper+1); printf("\tmax supernode size = %d\n", max_sup_size); printf("\tno of size 1 supernodes = %d\n", nsup1); /* Histogram of the supernode sizes */ ifill (bucket, NBUCKS, 0); for (i = 0; i <= nsuper; i++) { isize = xsup[i+1] - xsup[i]; whichb = (float) isize / max_sup_size * NBUCKS; if (whichb >= NBUCKS) whichb = NBUCKS - 1; bucket[whichb]++; } printf("\tHistogram of supernode sizes:\n"); for (i = 0; i < NBUCKS; i++) { bl = (float) i * max_sup_size / NBUCKS; bh = (float) (i+1) * max_sup_size / NBUCKS; printf("\tsnode: %d-%d\t\t%d\n", bl+1, bh, bucket[i]); } } float SpaSize(int n, int np, float sum_npw) { return (sum_npw*8 + np*8 + n*4)/1024.; } float DenseSize(int n, float sum_nw) { return (sum_nw*8 + n*8)/1024.;; } /*! \brief Check whether repfnz[] == EMPTY after reset. */ void check_repfnz(int n, int w, int jcol, int *repfnz) { int jj, k; for (jj = jcol; jj < jcol+w; jj++) for (k = 0; k < n; k++) if ( repfnz[(jj-jcol)*n + k] != EMPTY ) { fprintf(stderr, "col %d, repfnz_col[%d] = %d\n", jj, k, repfnz[(jj-jcol)*n + k]); ABORT("check_repfnz"); } } /*! \brief Print a summary of the testing results. */ void PrintSumm(char *type, int nfail, int nrun, int nerrs) { if ( nfail > 0 ) printf("%3s driver: %d out of %d tests failed to pass the threshold\n", type, nfail, nrun); else printf("All tests for %3s driver passed the threshold (%6d tests run)\n", type, nrun); if ( nerrs > 0 ) printf("%6d error messages recorded\n", nerrs); } int print_int_vec(char *what, int n, int *vec) { int i; printf("%s\n", what); for (i = 0; i < n; ++i) printf("%d\t%d\n", i, vec[i]); return 0; } int slu_PrintInt10(char *name, int len, int *x) { register int i; printf("%10s:", name); for (i = 0; i < len; ++i) { if ( i % 10 == 0 ) printf("\n\t[%2d-%2d]", i, i + 9); printf("%6d", x[i]); } printf("\n"); return 0; }