/* -- translated by f2c (version 19940927). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static integer c__3 = 3; static integer c__1 = 1; static real c_b8 = 1.f; static real c_b10 = 0.f; /* Subroutine */ int slarge_slu(integer *n, real *a, integer *lda, integer * iseed, real *work, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1; real r__1; /* Builtin functions */ double r_sign(real *, real *); /* Local variables */ extern /* Subroutine */ int sger_(integer *, integer *, real *, real *, integer *, real *, integer *, real *, integer *); extern real snrm2_(integer *, real *, integer *); static integer i; extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *), sgemv_(char *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); static real wa, wb, wn; extern /* Subroutine */ int slarnv_slu(integer *, integer *, integer *, real *); extern int input_error(char *, int *); static real tau; /* -- LAPACK auxiliary test routine (version 2.0) Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University February 29, 1992 Purpose ======= SLARGE pre- and post-multiplies a real general n by n matrix A with a random orthogonal matrix: A = U*D*U'. Arguments ========= N (input) INTEGER The order of the matrix A. N >= 0. A (input/output) REAL array, dimension (LDA,N) On entry, the original n by n matrix A. On exit, A is overwritten by U*A*U' for some random orthogonal matrix U. LDA (input) INTEGER The leading dimension of the array A. LDA >= N. ISEED (input/output) INTEGER array, dimension (4) On entry, the seed of the random number generator; the array elements must be between 0 and 4095, and ISEED(4) must be odd. On exit, the seed is updated. WORK (workspace) REAL array, dimension (2*N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value ===================================================================== Test the input arguments Parameter adjustments */ a_dim1 = *lda; a_offset = a_dim1 + 1; a -= a_offset; --iseed; --work; /* Function Body */ *info = 0; if (*n < 0) { *info = -1; } else if (*lda < max(1,*n)) { *info = -3; } if (*info < 0) { i__1 = -(*info); input_error("SLARGE", &i__1); return 0; } /* pre- and post-multiply A by random orthogonal matrix */ for (i = *n; i >= 1; --i) { /* generate random reflection */ i__1 = *n - i + 1; slarnv_slu(&c__3, &iseed[1], &i__1, &work[1]); i__1 = *n - i + 1; wn = snrm2_(&i__1, &work[1], &c__1); wa = r_sign(&wn, &work[1]); if (wn == 0.f) { tau = 0.f; } else { wb = work[1] + wa; i__1 = *n - i; r__1 = 1.f / wb; sscal_(&i__1, &r__1, &work[2], &c__1); work[1] = 1.f; tau = wb / wa; } /* multiply A(i:n,1:n) by random reflection from the left */ i__1 = *n - i + 1; sgemv_("Transpose", &i__1, n, &c_b8, &a[i + a_dim1], lda, &work[1], & c__1, &c_b10, &work[*n + 1], &c__1); i__1 = *n - i + 1; r__1 = -(doublereal)tau; sger_(&i__1, n, &r__1, &work[1], &c__1, &work[*n + 1], &c__1, &a[i + a_dim1], lda); /* multiply A(1:n,i:n) by random reflection from the right */ i__1 = *n - i + 1; sgemv_("No transpose", n, &i__1, &c_b8, &a[i * a_dim1 + 1], lda, & work[1], &c__1, &c_b10, &work[*n + 1], &c__1); i__1 = *n - i + 1; r__1 = -(doublereal)tau; sger_(n, &i__1, &r__1, &work[*n + 1], &c__1, &work[1], &c__1, &a[i * a_dim1 + 1], lda); /* L10: */ } return 0; /* End of SLARGE */ } /* slarge_slu */