/* -- translated by f2c (version 19940927). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Double Complex */ VOID zlarnd_slu(doublecomplex * ret_val, integer *idist, integer *iseed) { /* System generated locals */ doublereal d__1, d__2; doublecomplex z__1, z__2, z__3; /* Builtin functions */ double log(doublereal), sqrt(doublereal); void z_exp(doublecomplex *, doublecomplex *); /* Local variables */ static doublereal t1, t2; extern doublereal dlaran_slu(integer *); /* -- LAPACK auxiliary routine (version 2.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= ZLARND returns a random complex number from a uniform or normal distribution. Arguments ========= IDIST (input) INTEGER Specifies the distribution of the random numbers: = 1: real and imaginary parts each uniform (0,1) = 2: real and imaginary parts each uniform (-1,1) = 3: real and imaginary parts each normal (0,1) = 4: uniformly distributed on the disc abs(z) <= 1 = 5: uniformly distributed on the circle abs(z) = 1 ISEED (input/output) INTEGER array, dimension (4) On entry, the seed of the random number generator; the array elements must be between 0 and 4095, and ISEED(4) must be odd. On exit, the seed is updated. Further Details =============== This routine calls the auxiliary routine DLARAN to generate a random real number from a uniform (0,1) distribution. The Box-Muller method is used to transform numbers from a uniform to a normal distribution. ===================================================================== Generate a pair of real random numbers from a uniform (0,1) distribution Parameter adjustments */ --iseed; /* Function Body */ t1 = dlaran_slu(&iseed[1]); t2 = dlaran_slu(&iseed[1]); if (*idist == 1) { /* real and imaginary parts each uniform (0,1) */ z__1.r = t1, z__1.i = t2; ret_val->r = z__1.r, ret_val->i = z__1.i; } else if (*idist == 2) { /* real and imaginary parts each uniform (-1,1) */ d__1 = t1 * 2. - 1.; d__2 = t2 * 2. - 1.; z__1.r = d__1, z__1.i = d__2; ret_val->r = z__1.r, ret_val->i = z__1.i; } else if (*idist == 3) { /* real and imaginary parts each normal (0,1) */ d__1 = sqrt(log(t1) * -2.); d__2 = t2 * 6.2831853071795864769252867663; z__3.r = 0., z__3.i = d__2; z_exp(&z__2, &z__3); z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i; ret_val->r = z__1.r, ret_val->i = z__1.i; } else if (*idist == 4) { /* uniform distribution on the unit disc abs(z) <= 1 */ d__1 = sqrt(t1); d__2 = t2 * 6.2831853071795864769252867663; z__3.r = 0., z__3.i = d__2; z_exp(&z__2, &z__3); z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i; ret_val->r = z__1.r, ret_val->i = z__1.i; } else if (*idist == 5) { /* uniform distribution on the unit circle abs(z) = 1 */ d__1 = t2 * 6.2831853071795864769252867663; z__2.r = 0., z__2.i = d__1; z_exp(&z__1, &z__2); ret_val->r = z__1.r, ret_val->i = z__1.i; } return ; /* End of ZLARND */ } /* zlarnd_slu */