#include "f2c.h" /* Subroutine */ int zlarnv_slu(integer *idist, integer *iseed, integer *n, doublecomplex *x) { /* -- LAPACK auxiliary routine (version 2.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= ZLARNV returns a vector of n random complex numbers from a uniform or normal distribution. Arguments ========= IDIST (input) INTEGER Specifies the distribution of the random numbers: = 1: real and imaginary parts each uniform (0,1) = 2: real and imaginary parts each uniform (-1,1) = 3: real and imaginary parts each normal (0,1) = 4: uniformly distributed on the disc abs(z) < 1 = 5: uniformly distributed on the circle abs(z) = 1 ISEED (input/output) INTEGER array, dimension (4) On entry, the seed of the random number generator; the array elements must be between 0 and 4095, and ISEED(4) must be odd. On exit, the seed is updated. N (input) INTEGER The number of random numbers to be generated. X (output) COMPLEX*16 array, dimension (N) The generated random numbers. Further Details =============== This routine calls the auxiliary routine DLARUV to generate random real numbers from a uniform (0,1) distribution, in batches of up to 128 using vectorisable code. The Box-Muller method is used to transform numbers from a uniform to a normal distribution. ===================================================================== Parameter adjustments Function Body */ /* System generated locals */ integer i__1, i__2, i__3, i__4, i__5; doublereal d__1, d__2; doublecomplex z__1, z__2, z__3; /* Builtin functions */ double log(doublereal), sqrt(doublereal); void z_exp(doublecomplex *, doublecomplex *); /* Local variables */ static integer i; static doublereal u[128]; static integer il, iv; extern /* Subroutine */ int dlaruv_slu(integer *, integer *, doublereal *); #define U(I) u[(I)] #define X(I) x[(I)-1] #define ISEED(I) iseed[(I)-1] i__1 = *n; for (iv = 1; iv <= *n; iv += 64) { /* Computing MIN */ i__2 = 64, i__3 = *n - iv + 1; il = min(i__2,i__3); /* Call DLARUV to generate 2*IL real numbers from a uniform (0, 1) distribution (2*IL <= LV) */ i__2 = il << 1; dlaruv_slu(&ISEED(1), &i__2, u); if (*idist == 1) { /* Copy generated numbers */ i__2 = il; for (i = 1; i <= il; ++i) { i__3 = iv + i - 1; i__4 = (i << 1) - 2; i__5 = (i << 1) - 1; z__1.r = U((i<<1)-2), z__1.i = U((i<<1)-1); X(iv+i-1).r = z__1.r, X(iv+i-1).i = z__1.i; /* L10: */ } } else if (*idist == 2) { /* Convert generated numbers to uniform (-1,1) distribut ion */ i__2 = il; for (i = 1; i <= il; ++i) { i__3 = iv + i - 1; d__1 = U((i << 1) - 2) * 2. - 1.; d__2 = U((i << 1) - 1) * 2. - 1.; z__1.r = d__1, z__1.i = d__2; X(iv+i-1).r = z__1.r, X(iv+i-1).i = z__1.i; /* L20: */ } } else if (*idist == 3) { /* Convert generated numbers to normal (0,1) distributio n */ i__2 = il; for (i = 1; i <= il; ++i) { i__3 = iv + i - 1; d__1 = sqrt(log(U((i << 1) - 2)) * -2.); d__2 = U((i << 1) - 1) * 6.2831853071795864769252867663; z__3.r = 0., z__3.i = d__2; z_exp(&z__2, &z__3); z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i; X(iv+i-1).r = z__1.r, X(iv+i-1).i = z__1.i; /* L30: */ } } else if (*idist == 4) { /* Convert generated numbers to complex numbers uniforml y distributed on the unit disk */ i__2 = il; for (i = 1; i <= il; ++i) { i__3 = iv + i - 1; d__1 = sqrt(U((i << 1) - 2)); d__2 = U((i << 1) - 1) * 6.2831853071795864769252867663; z__3.r = 0., z__3.i = d__2; z_exp(&z__2, &z__3); z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i; X(iv+i-1).r = z__1.r, X(iv+i-1).i = z__1.i; /* L40: */ } } else if (*idist == 5) { /* Convert generated numbers to complex numbers uniforml y distributed on the unit circle */ i__2 = il; for (i = 1; i <= il; ++i) { i__3 = iv + i - 1; d__1 = U((i << 1) - 1) * 6.2831853071795864769252867663; z__2.r = 0., z__2.i = d__1; z_exp(&z__1, &z__2); X(iv+i-1).r = z__1.r, X(iv+i-1).i = z__1.i; /* L50: */ } } /* L60: */ } return 0; /* End of ZLARNV */ } /* zlarnv_slu */