#include "f2c.h" /* Subroutine */ int zlartg_slu(doublecomplex *f, doublecomplex *g, doublereal * cs, doublecomplex *sn, doublecomplex *r) { /* -- LAPACK auxiliary routine (version 2.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= ZLARTG generates a plane rotation so that [ CS SN ] [ F ] [ R ] [ __ ] . [ ] = [ ] where CS**2 + |SN|**2 = 1. [ -SN CS ] [ G ] [ 0 ] This is a faster version of the BLAS1 routine ZROTG, except for the following differences: F and G are unchanged on return. If G=0, then CS=1 and SN=0. If F=0 and (G .ne. 0), then CS=0 and SN=1 without doing any floating point operations. Arguments ========= F (input) COMPLEX*16 The first component of vector to be rotated. G (input) COMPLEX*16 The second component of vector to be rotated. CS (output) DOUBLE PRECISION The cosine of the rotation. SN (output) COMPLEX*16 The sine of the rotation. R (output) COMPLEX*16 The nonzero component of the rotated vector. ===================================================================== [ 25 or 38 ops for main paths ] */ /* System generated locals */ doublereal d__1, d__2; doublecomplex z__1, z__2, z__3; /* Builtin functions */ void d_cnjg(doublecomplex *, doublecomplex *); double z_abs(doublecomplex *), d_imag(doublecomplex *), sqrt(doublereal); /* Local variables */ static doublereal d, f1, f2, g1, g2, fa, ga, di; static doublecomplex fs, gs, ss; if (g->r == 0. && g->i == 0.) { *cs = 1.; sn->r = 0., sn->i = 0.; r->r = f->r, r->i = f->i; } else if (f->r == 0. && f->i == 0.) { *cs = 0.; d_cnjg(&z__2, g); d__1 = z_abs(g); z__1.r = z__2.r / d__1, z__1.i = z__2.i / d__1; sn->r = z__1.r, sn->i = z__1.i; d__1 = z_abs(g); r->r = d__1, r->i = 0.; /* SN = ONE R = G */ } else { f1 = (d__1 = f->r, abs(d__1)) + (d__2 = d_imag(f), abs(d__2)); g1 = (d__1 = g->r, abs(d__1)) + (d__2 = d_imag(g), abs(d__2)); if (f1 >= g1) { z__1.r = g->r / f1, z__1.i = g->i / f1; gs.r = z__1.r, gs.i = z__1.i; /* Computing 2nd power */ d__1 = gs.r; /* Computing 2nd power */ d__2 = d_imag(&gs); g2 = d__1 * d__1 + d__2 * d__2; z__1.r = f->r / f1, z__1.i = f->i / f1; fs.r = z__1.r, fs.i = z__1.i; /* Computing 2nd power */ d__1 = fs.r; /* Computing 2nd power */ d__2 = d_imag(&fs); f2 = d__1 * d__1 + d__2 * d__2; d = sqrt(g2 / f2 + 1.); *cs = 1. / d; d_cnjg(&z__3, &gs); z__2.r = z__3.r * fs.r - z__3.i * fs.i, z__2.i = z__3.r * fs.i + z__3.i * fs.r; d__1 = *cs / f2; z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i; sn->r = z__1.r, sn->i = z__1.i; z__1.r = d * f->r, z__1.i = d * f->i; r->r = z__1.r, r->i = z__1.i; } else { z__1.r = f->r / g1, z__1.i = f->i / g1; fs.r = z__1.r, fs.i = z__1.i; /* Computing 2nd power */ d__1 = fs.r; /* Computing 2nd power */ d__2 = d_imag(&fs); f2 = d__1 * d__1 + d__2 * d__2; fa = sqrt(f2); z__1.r = g->r / g1, z__1.i = g->i / g1; gs.r = z__1.r, gs.i = z__1.i; /* Computing 2nd power */ d__1 = gs.r; /* Computing 2nd power */ d__2 = d_imag(&gs); g2 = d__1 * d__1 + d__2 * d__2; ga = sqrt(g2); d = sqrt(f2 / g2 + 1.); di = 1. / d; *cs = fa / ga * di; d_cnjg(&z__3, &gs); z__2.r = z__3.r * fs.r - z__3.i * fs.i, z__2.i = z__3.r * fs.i + z__3.i * fs.r; d__1 = fa * ga; z__1.r = z__2.r / d__1, z__1.i = z__2.i / d__1; ss.r = z__1.r, ss.i = z__1.i; z__1.r = di * ss.r, z__1.i = di * ss.i; sn->r = z__1.r, sn->i = z__1.i; z__2.r = g->r * ss.r - g->i * ss.i, z__2.i = g->r * ss.i + g->i * ss.r; z__1.r = d * z__2.r, z__1.i = d * z__2.i; r->r = z__1.r, r->i = z__1.i; } } return 0; /* End of ZLARTG */ } /* zlartg_slu */