/*! \file Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from U.S. Dept. of Energy) All rights reserved. The source code is distributed under BSD license, see the file License.txt at the top-level directory. */ /* * -- SuperLU routine (version 2.0) -- * Univ. of California Berkeley, Xerox Palo Alto Research Center, * and Lawrence Berkeley National Lab. * November 15, 1997 * */ #include #include "slu_cdefs.h" int cgst01(int m, int n, SuperMatrix *A, SuperMatrix *L, SuperMatrix *U, int *perm_c, int *perm_r, float *resid) { /* Purpose ======= CGST01 reconstructs a matrix A from its L*U factorization and computes the residual norm(L*U - A) / ( N * norm(A) * EPS ), where EPS is the machine epsilon. Arguments ========== M (input) INT The number of rows of the matrix A. M >= 0. N (input) INT The number of columns of the matrix A. N >= 0. A (input) SuperMatrix *, dimension (A->nrow, A->ncol) The original M x N matrix A. L (input) SuperMatrix *, dimension (L->nrow, L->ncol) The factor matrix L. U (input) SuperMatrix *, dimension (U->nrow, U->ncol) The factor matrix U. perm_c (input) INT array, dimension (N) The column permutation from CGSTRF. perm_r (input) INT array, dimension (M) The pivot indices from CGSTRF. RESID (output) FLOAT* norm(L*U - A) / ( N * norm(A) * EPS ) ===================================================================== */ /* Local variables */ complex zero = {0.0, 0.0}; int i, j, k, arow, lptr,isub, urow, superno, fsupc, u_part; complex utemp, comp_temp; float anorm, tnorm, cnorm; float eps; complex *work; SCformat *Lstore; NCformat *Astore, *Ustore; complex *Aval, *Lval, *Uval; int *colbeg, *colend; /* Function prototypes */ extern float clangs(char *, SuperMatrix *); /* Quick exit if M = 0 or N = 0. */ if (m <= 0 || n <= 0) { *resid = 0.f; return 0; } work = (complex *)complexCalloc(m); Astore = A->Store; Aval = Astore->nzval; Lstore = L->Store; Lval = Lstore->nzval; Ustore = U->Store; Uval = Ustore->nzval; colbeg = intMalloc(n); colend = intMalloc(n); for (i = 0; i < n; i++) { colbeg[perm_c[i]] = Astore->colptr[i]; colend[perm_c[i]] = Astore->colptr[i+1]; } /* Determine EPS and the norm of A. */ eps = smach("Epsilon"); anorm = clangs("1", A); cnorm = 0.; /* Compute the product L*U, one column at a time */ for (k = 0; k < n; ++k) { /* The U part outside the rectangular supernode */ for (i = U_NZ_START(k); i < U_NZ_START(k+1); ++i) { urow = U_SUB(i); utemp = Uval[i]; superno = Lstore->col_to_sup[urow]; fsupc = L_FST_SUPC(superno); u_part = urow - fsupc + 1; lptr = L_SUB_START(fsupc) + u_part; work[L_SUB(lptr-1)].r -= utemp.r; work[L_SUB(lptr-1)].i -= utemp.i; for (j = L_NZ_START(urow) + u_part; j < L_NZ_START(urow+1); ++j) { isub = L_SUB(lptr); cc_mult(&comp_temp, &utemp, &Lval[j]); c_sub(&work[isub], &work[isub], &comp_temp); ++lptr; } } /* The U part inside the rectangular supernode */ superno = Lstore->col_to_sup[k]; fsupc = L_FST_SUPC(superno); urow = L_NZ_START(k); for (i = fsupc; i <= k; ++i) { utemp = Lval[urow++]; u_part = i - fsupc + 1; lptr = L_SUB_START(fsupc) + u_part; work[L_SUB(lptr-1)].r -= utemp.r; work[L_SUB(lptr-1)].i -= utemp.i; for (j = L_NZ_START(i)+u_part; j < L_NZ_START(i+1); ++j) { isub = L_SUB(lptr); cc_mult(&comp_temp, &utemp, &Lval[j]); c_sub(&work[isub], &work[isub], &comp_temp); ++lptr; } } /* Now compute A[k] - (L*U)[k] (Both matrices may be permuted.) */ for (i = colbeg[k]; i < colend[k]; ++i) { arow = Astore->rowind[i]; work[perm_r[arow]].r += Aval[i].r; work[perm_r[arow]].i += Aval[i].i; } /* Now compute the 1-norm of the column vector work */ tnorm = 0.; for (i = 0; i < m; ++i) { tnorm += fabs(work[i].r) + fabs(work[i].i); work[i] = zero; } cnorm = SUPERLU_MAX(tnorm, cnorm); } *resid = cnorm; if (anorm <= 0.f) { if (*resid != 0.f) { *resid = 1.f / eps; } } else { *resid = *resid / (float) n / anorm / eps; } SUPERLU_FREE(work); SUPERLU_FREE(colbeg); SUPERLU_FREE(colend); return 0; /* End of CGST01 */ } /* cgst01_ */