/*! \file Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from U.S. Dept. of Energy) All rights reserved. The source code is distributed under BSD license, see the file License.txt at the top-level directory. */ /* * -- SuperLU routine (version 2.0) -- * Univ. of California Berkeley, Xerox Palo Alto Research Center, * and Lawrence Berkeley National Lab. * November 15, 1997 * */ #include #include "slu_zdefs.h" int zgst01(int m, int n, SuperMatrix *A, SuperMatrix *L, SuperMatrix *U, int *perm_c, int *perm_r, double *resid) { /* Purpose ======= ZGST01 reconstructs a matrix A from its L*U factorization and computes the residual norm(L*U - A) / ( N * norm(A) * EPS ), where EPS is the machine epsilon. Arguments ========== M (input) INT The number of rows of the matrix A. M >= 0. N (input) INT The number of columns of the matrix A. N >= 0. A (input) SuperMatrix *, dimension (A->nrow, A->ncol) The original M x N matrix A. L (input) SuperMatrix *, dimension (L->nrow, L->ncol) The factor matrix L. U (input) SuperMatrix *, dimension (U->nrow, U->ncol) The factor matrix U. perm_c (input) INT array, dimension (N) The column permutation from ZGSTRF. perm_r (input) INT array, dimension (M) The pivot indices from ZGSTRF. RESID (output) DOUBLE* norm(L*U - A) / ( N * norm(A) * EPS ) ===================================================================== */ /* Local variables */ doublecomplex zero = {0.0, 0.0}; int i, j, k, arow, lptr,isub, urow, superno, fsupc, u_part; doublecomplex utemp, comp_temp; double anorm, tnorm, cnorm; double eps; doublecomplex *work; SCformat *Lstore; NCformat *Astore, *Ustore; doublecomplex *Aval, *Lval, *Uval; int *colbeg, *colend; /* Function prototypes */ extern double zlangs(char *, SuperMatrix *); /* Quick exit if M = 0 or N = 0. */ if (m <= 0 || n <= 0) { *resid = 0.f; return 0; } work = (doublecomplex *)doublecomplexCalloc(m); Astore = A->Store; Aval = Astore->nzval; Lstore = L->Store; Lval = Lstore->nzval; Ustore = U->Store; Uval = Ustore->nzval; colbeg = intMalloc(n); colend = intMalloc(n); for (i = 0; i < n; i++) { colbeg[perm_c[i]] = Astore->colptr[i]; colend[perm_c[i]] = Astore->colptr[i+1]; } /* Determine EPS and the norm of A. */ eps = dmach("Epsilon"); anorm = zlangs("1", A); cnorm = 0.; /* Compute the product L*U, one column at a time */ for (k = 0; k < n; ++k) { /* The U part outside the rectangular supernode */ for (i = U_NZ_START(k); i < U_NZ_START(k+1); ++i) { urow = U_SUB(i); utemp = Uval[i]; superno = Lstore->col_to_sup[urow]; fsupc = L_FST_SUPC(superno); u_part = urow - fsupc + 1; lptr = L_SUB_START(fsupc) + u_part; work[L_SUB(lptr-1)].r -= utemp.r; work[L_SUB(lptr-1)].i -= utemp.i; for (j = L_NZ_START(urow) + u_part; j < L_NZ_START(urow+1); ++j) { isub = L_SUB(lptr); zz_mult(&comp_temp, &utemp, &Lval[j]); z_sub(&work[isub], &work[isub], &comp_temp); ++lptr; } } /* The U part inside the rectangular supernode */ superno = Lstore->col_to_sup[k]; fsupc = L_FST_SUPC(superno); urow = L_NZ_START(k); for (i = fsupc; i <= k; ++i) { utemp = Lval[urow++]; u_part = i - fsupc + 1; lptr = L_SUB_START(fsupc) + u_part; work[L_SUB(lptr-1)].r -= utemp.r; work[L_SUB(lptr-1)].i -= utemp.i; for (j = L_NZ_START(i)+u_part; j < L_NZ_START(i+1); ++j) { isub = L_SUB(lptr); zz_mult(&comp_temp, &utemp, &Lval[j]); z_sub(&work[isub], &work[isub], &comp_temp); ++lptr; } } /* Now compute A[k] - (L*U)[k] (Both matrices may be permuted.) */ for (i = colbeg[k]; i < colend[k]; ++i) { arow = Astore->rowind[i]; work[perm_r[arow]].r += Aval[i].r; work[perm_r[arow]].i += Aval[i].i; } /* Now compute the 1-norm of the column vector work */ tnorm = 0.; for (i = 0; i < m; ++i) { tnorm += fabs(work[i].r) + fabs(work[i].i); work[i] = zero; } cnorm = SUPERLU_MAX(tnorm, cnorm); } *resid = cnorm; if (anorm <= 0.f) { if (*resid != 0.f) { *resid = 1.f / eps; } } else { *resid = *resid / (float) n / anorm / eps; } SUPERLU_FREE(work); SUPERLU_FREE(colbeg); SUPERLU_FREE(colend); return 0; /* End of ZGST01 */ } /* zgst01_ */