/*! \file Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from U.S. Dept. of Energy) All rights reserved. The source code is distributed under BSD license, see the file License.txt at the top-level directory. */ /* * -- SuperLU routine (version 3.0) -- * Univ. of California Berkeley, Xerox Palo Alto Research Center, * and Lawrence Berkeley National Lab. * October 15, 2003 * */ #include "slu_zdefs.h" int zgst02(trans_t trans, int m, int n, int nrhs, SuperMatrix *A, doublecomplex *x, int ldx, doublecomplex *b, int ldb, double *resid) { /* Purpose ======= ZGST02 computes the residual for a solution of a system of linear equations A*x = b or A'*x = b: RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS ), where EPS is the machine epsilon. Arguments ========= TRANS (input) trans_t Specifies the form of the system of equations: = NOTRANS: A *x = b = TRANS : A'*x = b, where A' is the transpose of A = CONJ : A'*x = b, where A' is the transpose of A M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. NRHS (input) INTEGER The number of columns of B, the matrix of right hand sides. NRHS >= 0. A (input) SuperMatrix*, dimension (LDA,N) The original M x N sparse matrix A. X (input) DOUBLE COMPLEX PRECISION array, dimension (LDX,NRHS) The computed solution vectors for the system of linear equations. LDX (input) INTEGER The leading dimension of the array X. If TRANS = NOTRANS, LDX >= max(1,N); if TRANS = TRANS or CONJ, LDX >= max(1,M). B (input/output) DOUBLE COMPLEX PRECISION array, dimension (LDB,NRHS) On entry, the right hand side vectors for the system of linear equations. On exit, B is overwritten with the difference B - A*X. LDB (input) INTEGER The leading dimension of the array B. IF TRANS = NOTRANS, LDB >= max(1,M); if TRANS = TRANS or CONJ, LDB >= max(1,N). RESID (output) DOUBLE PRECISION The maximum over the number of right hand sides of norm(B - A*X) / ( norm(A) * norm(X) * EPS ). ===================================================================== */ /* Table of constant values */ doublecomplex alpha = {-1., 0.0}; doublecomplex beta = {1., 0.0}; int c__1 = 1; /* System generated locals */ double d__1, d__2; /* Local variables */ int j; int n1, n2; double anorm, bnorm; double xnorm; double eps; char transc[1]; /* Function prototypes */ extern double zlangs(char *, SuperMatrix *); extern double dzasum_(int *, doublecomplex *, int *); /* Function Body */ if ( m <= 0 || n <= 0 || nrhs == 0) { *resid = 0.; return 0; } if ( (trans == TRANS) || (trans == CONJ) ) { n1 = n; n2 = m; *transc = 'T'; } else { n1 = m; n2 = n; *transc = 'N'; } /* Exit with RESID = 1/EPS if ANORM = 0. */ eps = dmach("Epsilon"); anorm = zlangs("1", A); if (anorm <= 0.) { *resid = 1. / eps; return 0; } /* Compute B - A*X (or B - A'*X ) and store in B. */ sp_zgemm(transc, "N", n1, nrhs, n2, alpha, A, x, ldx, beta, b, ldb); /* Compute the maximum over the number of right hand sides of norm(B - A*X) / ( norm(A) * norm(X) * EPS ) . */ *resid = 0.; for (j = 0; j < nrhs; ++j) { bnorm = dzasum_(&n1, &b[j*ldb], &c__1); xnorm = dzasum_(&n2, &x[j*ldx], &c__1); if (xnorm <= 0.) { *resid = 1. / eps; } else { /* Computing MAX */ d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps; *resid = SUPERLU_MAX(d__1, d__2); } } return 0; } /* zgst02 */