use criterion::{black_box, criterion_group, criterion_main, Bencher, BenchmarkId, Criterion}; use itertools::Itertools; use rand::{rngs::StdRng, seq::SliceRandom, SeedableRng}; fn strict(b: &mut Bencher, (k, vals): &(usize, &Vec)) { b.iter(|| black_box(vals.iter()).k_smallest(*k)) } fn relaxed(b: &mut Bencher, (k, vals): &(usize, &Vec)) { b.iter(|| black_box(vals.iter()).k_smallest_relaxed(*k)) } fn ascending(n: usize) -> Vec { (0..n).collect() } fn random(n: usize) -> Vec { let mut vals = (0..n).collect_vec(); vals.shuffle(&mut StdRng::seed_from_u64(42)); vals } fn descending(n: usize) -> Vec { (0..n).rev().collect() } fn k_smallest(c: &mut Criterion, order: &str, vals: fn(usize) -> Vec) { let mut g = c.benchmark_group(format!("k-smallest/{order}")); for log_n in 20..23 { let n = 1 << log_n; let vals = vals(n); for log_k in 7..10 { let k = 1 << log_k; let params = format!("{log_n}/{log_k}"); let input = (k, &vals); g.bench_with_input(BenchmarkId::new("strict", ¶ms), &input, strict); g.bench_with_input(BenchmarkId::new("relaxed", ¶ms), &input, relaxed); } } g.finish() } fn k_smallest_asc(c: &mut Criterion) { k_smallest(c, "asc", ascending); } fn k_smallest_rand(c: &mut Criterion) { k_smallest(c, "rand", random); } fn k_smallest_desc(c: &mut Criterion) { k_smallest(c, "desc", descending); } criterion_group!(benches, k_smallest_asc, k_smallest_rand, k_smallest_desc); criterion_main!(benches);