#![allow(unstable_name_collisions)] use crate::it::cloned; use crate::it::free::put_back_n; use crate::it::free::rciter; use crate::it::iproduct; use crate::it::izip; use crate::it::multipeek; use crate::it::multizip; use crate::it::peek_nth; use crate::it::repeat_n; use crate::it::ExactlyOneError; use crate::it::FoldWhile; use crate::it::Itertools; use itertools as it; use quickcheck as qc; use rand::{ distributions::{Distribution, Standard}, rngs::StdRng, Rng, SeedableRng, }; use rand::{seq::SliceRandom, thread_rng}; use std::{cmp::min, fmt::Debug, marker::PhantomData}; #[test] fn product3() { let prod = iproduct!(0..3, 0..2, 0..2); assert_eq!(prod.size_hint(), (12, Some(12))); let v = prod.collect_vec(); for i in 0..3 { for j in 0..2 { for k in 0..2 { assert!((i, j, k) == v[(i * 2 * 2 + j * 2 + k) as usize]); } } } for (_, _, _, _) in iproduct!(0..3, 0..2, 0..2, 0..3) { /* test compiles */ } } #[test] fn interleave_shortest() { let v0: Vec = vec![0, 2, 4]; let v1: Vec = vec![1, 3, 5, 7]; let it = v0.into_iter().interleave_shortest(v1); assert_eq!(it.size_hint(), (6, Some(6))); assert_eq!(it.collect_vec(), vec![0, 1, 2, 3, 4, 5]); let v0: Vec = vec![0, 2, 4, 6, 8]; let v1: Vec = vec![1, 3, 5]; let it = v0.into_iter().interleave_shortest(v1); assert_eq!(it.size_hint(), (7, Some(7))); assert_eq!(it.collect_vec(), vec![0, 1, 2, 3, 4, 5, 6]); let i0 = ::std::iter::repeat(0); let v1: Vec<_> = vec![1, 3, 5]; let it = i0.interleave_shortest(v1); assert_eq!(it.size_hint(), (7, Some(7))); let v0: Vec<_> = vec![0, 2, 4]; let i1 = ::std::iter::repeat(1); let it = v0.into_iter().interleave_shortest(i1); assert_eq!(it.size_hint(), (6, Some(6))); } #[test] fn duplicates_by() { let xs = ["aaa", "bbbbb", "aa", "ccc", "bbbb", "aaaaa", "cccc"]; let ys = ["aa", "bbbb", "cccc"]; it::assert_equal(ys.iter(), xs.iter().duplicates_by(|x| x[..2].to_string())); it::assert_equal( ys.iter(), xs.iter().rev().duplicates_by(|x| x[..2].to_string()).rev(), ); let ys_rev = ["ccc", "aa", "bbbbb"]; it::assert_equal( ys_rev.iter(), xs.iter().duplicates_by(|x| x[..2].to_string()).rev(), ); } #[test] fn duplicates() { let xs = [0, 1, 2, 3, 2, 1, 3]; let ys = [2, 1, 3]; it::assert_equal(ys.iter(), xs.iter().duplicates()); it::assert_equal(ys.iter(), xs.iter().rev().duplicates().rev()); let ys_rev = [3, 2, 1]; it::assert_equal(ys_rev.iter(), xs.iter().duplicates().rev()); let xs = [0, 1, 0, 1]; let ys = [0, 1]; it::assert_equal(ys.iter(), xs.iter().duplicates()); it::assert_equal(ys.iter(), xs.iter().rev().duplicates().rev()); let ys_rev = [1, 0]; it::assert_equal(ys_rev.iter(), xs.iter().duplicates().rev()); let xs = [0, 1, 2, 1, 2]; let ys = vec![1, 2]; assert_eq!(ys, xs.iter().duplicates().cloned().collect_vec()); assert_eq!( ys, xs.iter().rev().duplicates().rev().cloned().collect_vec() ); let ys_rev = vec![2, 1]; assert_eq!(ys_rev, xs.iter().duplicates().rev().cloned().collect_vec()); } #[test] fn unique_by() { let xs = ["aaa", "bbbbb", "aa", "ccc", "bbbb", "aaaaa", "cccc"]; let ys = ["aaa", "bbbbb", "ccc"]; it::assert_equal(ys.iter(), xs.iter().unique_by(|x| x[..2].to_string())); it::assert_equal( ys.iter(), xs.iter().rev().unique_by(|x| x[..2].to_string()).rev(), ); let ys_rev = ["cccc", "aaaaa", "bbbb"]; it::assert_equal( ys_rev.iter(), xs.iter().unique_by(|x| x[..2].to_string()).rev(), ); } #[test] fn unique() { let xs = [0, 1, 2, 3, 2, 1, 3]; let ys = [0, 1, 2, 3]; it::assert_equal(ys.iter(), xs.iter().unique()); it::assert_equal(ys.iter(), xs.iter().rev().unique().rev()); let ys_rev = [3, 1, 2, 0]; it::assert_equal(ys_rev.iter(), xs.iter().unique().rev()); let xs = [0, 1]; let ys = [0, 1]; it::assert_equal(ys.iter(), xs.iter().unique()); it::assert_equal(ys.iter(), xs.iter().rev().unique().rev()); let ys_rev = [1, 0]; it::assert_equal(ys_rev.iter(), xs.iter().unique().rev()); } #[test] fn intersperse() { let xs = ["a", "", "b", "c"]; let v: Vec<&str> = xs.iter().cloned().intersperse(", ").collect(); let text: String = v.concat(); assert_eq!(text, "a, , b, c".to_string()); let ys = [0, 1, 2, 3]; let mut it = ys[..0].iter().copied().intersperse(1); assert!(it.next().is_none()); } #[test] fn dedup() { let xs = [0, 1, 1, 1, 2, 1, 3, 3]; let ys = [0, 1, 2, 1, 3]; it::assert_equal(ys.iter(), xs.iter().dedup()); let xs = [0, 0, 0, 0, 0]; let ys = [0]; it::assert_equal(ys.iter(), xs.iter().dedup()); let xs = [0, 1, 1, 1, 2, 1, 3, 3]; let ys = [0, 1, 2, 1, 3]; let mut xs_d = Vec::new(); xs.iter().dedup().fold((), |(), &elt| xs_d.push(elt)); assert_eq!(&xs_d, &ys); } #[test] fn coalesce() { let data = [-1., -2., -3., 3., 1., 0., -1.]; let it = data.iter().cloned().coalesce(|x, y| { if (x >= 0.) == (y >= 0.) { Ok(x + y) } else { Err((x, y)) } }); itertools::assert_equal(it.clone(), vec![-6., 4., -1.]); assert_eq!( it.fold(vec![], |mut v, n| { v.push(n); v }), vec![-6., 4., -1.] ); } #[test] fn dedup_by() { let xs = [ (0, 0), (0, 1), (1, 1), (2, 1), (0, 2), (3, 1), (0, 3), (1, 3), ]; let ys = [(0, 0), (0, 1), (0, 2), (3, 1), (0, 3)]; it::assert_equal(ys.iter(), xs.iter().dedup_by(|x, y| x.1 == y.1)); let xs = [(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)]; let ys = [(0, 1)]; it::assert_equal(ys.iter(), xs.iter().dedup_by(|x, y| x.0 == y.0)); let xs = [ (0, 0), (0, 1), (1, 1), (2, 1), (0, 2), (3, 1), (0, 3), (1, 3), ]; let ys = [(0, 0), (0, 1), (0, 2), (3, 1), (0, 3)]; let mut xs_d = Vec::new(); xs.iter() .dedup_by(|x, y| x.1 == y.1) .fold((), |(), &elt| xs_d.push(elt)); assert_eq!(&xs_d, &ys); } #[test] fn dedup_with_count() { let xs: [i32; 8] = [0, 1, 1, 1, 2, 1, 3, 3]; let ys: [(usize, &i32); 5] = [(1, &0), (3, &1), (1, &2), (1, &1), (2, &3)]; it::assert_equal(ys.iter().cloned(), xs.iter().dedup_with_count()); let xs: [i32; 5] = [0, 0, 0, 0, 0]; let ys: [(usize, &i32); 1] = [(5, &0)]; it::assert_equal(ys.iter().cloned(), xs.iter().dedup_with_count()); } #[test] fn dedup_by_with_count() { let xs = [ (0, 0), (0, 1), (1, 1), (2, 1), (0, 2), (3, 1), (0, 3), (1, 3), ]; let ys = [ (1, &(0, 0)), (3, &(0, 1)), (1, &(0, 2)), (1, &(3, 1)), (2, &(0, 3)), ]; it::assert_equal( ys.iter().cloned(), xs.iter().dedup_by_with_count(|x, y| x.1 == y.1), ); let xs = [(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)]; let ys = [(5, &(0, 1))]; it::assert_equal( ys.iter().cloned(), xs.iter().dedup_by_with_count(|x, y| x.0 == y.0), ); } #[test] fn all_equal() { assert!("".chars().all_equal()); assert!("A".chars().all_equal()); assert!(!"AABBCCC".chars().all_equal()); assert!("AAAAAAA".chars().all_equal()); for (_key, mut sub) in &"AABBCCC".chars().chunk_by(|&x| x) { assert!(sub.all_equal()); } } #[test] fn all_equal_value() { assert_eq!("".chars().all_equal_value(), Err(None)); assert_eq!("A".chars().all_equal_value(), Ok('A')); assert_eq!("AABBCCC".chars().all_equal_value(), Err(Some(('A', 'B')))); assert_eq!("AAAAAAA".chars().all_equal_value(), Ok('A')); { let mut it = [1, 2, 3].iter().copied(); let result = it.all_equal_value(); assert_eq!(result, Err(Some((1, 2)))); let remaining = it.next(); assert_eq!(remaining, Some(3)); assert!(it.next().is_none()); } } #[test] fn all_unique() { assert!("ABCDEFGH".chars().all_unique()); assert!(!"ABCDEFGA".chars().all_unique()); assert!(::std::iter::empty::().all_unique()); } #[test] fn test_put_back_n() { let xs = [0, 1, 1, 1, 2, 1, 3, 3]; let mut pb = put_back_n(xs.iter().cloned()); pb.next(); pb.next(); pb.put_back(1); pb.put_back(0); it::assert_equal(pb, xs.iter().cloned()); } #[test] fn tee() { let xs = [0, 1, 2, 3]; let (mut t1, mut t2) = xs.iter().cloned().tee(); assert_eq!(t1.next(), Some(0)); assert_eq!(t2.next(), Some(0)); assert_eq!(t1.next(), Some(1)); assert_eq!(t1.next(), Some(2)); assert_eq!(t1.next(), Some(3)); assert_eq!(t1.next(), None); assert_eq!(t2.next(), Some(1)); assert_eq!(t2.next(), Some(2)); assert_eq!(t1.next(), None); assert_eq!(t2.next(), Some(3)); assert_eq!(t2.next(), None); assert_eq!(t1.next(), None); assert_eq!(t2.next(), None); let (t1, t2) = xs.iter().cloned().tee(); it::assert_equal(t1, xs.iter().cloned()); it::assert_equal(t2, xs.iter().cloned()); let (t1, t2) = xs.iter().cloned().tee(); it::assert_equal(t1.zip(t2), xs.iter().cloned().zip(xs.iter().cloned())); } #[test] fn test_rciter() { let xs = [0, 1, 1, 1, 2, 1, 3, 5, 6]; let mut r1 = rciter(xs.iter().cloned()); let mut r2 = r1.clone(); assert_eq!(r1.next(), Some(0)); assert_eq!(r2.next(), Some(1)); let mut z = r1.zip(r2); assert_eq!(z.next(), Some((1, 1))); assert_eq!(z.next(), Some((2, 1))); assert_eq!(z.next(), Some((3, 5))); assert_eq!(z.next(), None); // test intoiterator let r1 = rciter(0..5); let mut z = izip!(&r1, r1); assert_eq!(z.next(), Some((0, 1))); } #[test] fn trait_pointers() { struct ByRef<'r, I: ?Sized>(&'r mut I); impl<'r, X, I> Iterator for ByRef<'r, I> where I: ?Sized + 'r + Iterator, { type Item = X; fn next(&mut self) -> Option { self.0.next() } } let mut it = Box::new(0..10) as Box>; assert_eq!(it.next(), Some(0)); { let jt: &mut dyn Iterator = &mut *it; assert_eq!(jt.next(), Some(1)); { let mut r = ByRef(jt); assert_eq!(r.next(), Some(2)); } assert_eq!(jt.find_position(|x| *x == 4), Some((1, 4))); jt.for_each(|_| ()); } } #[test] fn merge_by() { let odd: Vec<(u32, &str)> = vec![(1, "hello"), (3, "world"), (5, "!")]; let even = [(2, "foo"), (4, "bar"), (6, "baz")]; let expected = [ (1, "hello"), (2, "foo"), (3, "world"), (4, "bar"), (5, "!"), (6, "baz"), ]; let results = odd.iter().merge_by(even.iter(), |a, b| a.0 <= b.0); it::assert_equal(results, expected.iter()); } #[test] fn merge_by_btree() { use std::collections::BTreeMap; let mut bt1 = BTreeMap::new(); bt1.insert("hello", 1); bt1.insert("world", 3); let mut bt2 = BTreeMap::new(); bt2.insert("foo", 2); bt2.insert("bar", 4); let results = bt1.into_iter().merge_by(bt2, |a, b| a.0 <= b.0); let expected = vec![("bar", 4), ("foo", 2), ("hello", 1), ("world", 3)]; it::assert_equal(results, expected); } #[test] fn kmerge() { let its = (0..4).map(|s| (s..10).step_by(4)); it::assert_equal(its.kmerge(), 0..10); } #[test] fn kmerge_2() { let its = vec![3, 2, 1, 0].into_iter().map(|s| (s..10).step_by(4)); it::assert_equal(its.kmerge(), 0..10); } #[test] fn kmerge_empty() { let its = (0..4).map(|_| 0..0); assert_eq!(its.kmerge().next(), None); } #[test] fn kmerge_size_hint() { let its = (0..5).map(|_| (0..10)); assert_eq!(its.kmerge().size_hint(), (50, Some(50))); } #[test] fn kmerge_empty_size_hint() { let its = (0..5).map(|_| (0..0)); assert_eq!(its.kmerge().size_hint(), (0, Some(0))); } #[test] fn join() { let many = [1, 2, 3]; let one = [1]; let none: Vec = vec![]; assert_eq!(many.iter().join(", "), "1, 2, 3"); assert_eq!(one.iter().join(", "), "1"); assert_eq!(none.iter().join(", "), ""); } #[test] fn sorted_unstable_by() { let sc = [3, 4, 1, 2].iter().cloned().sorted_by(|&a, &b| a.cmp(&b)); it::assert_equal(sc, vec![1, 2, 3, 4]); let v = (0..5).sorted_unstable_by(|&a, &b| a.cmp(&b).reverse()); it::assert_equal(v, vec![4, 3, 2, 1, 0]); } #[test] fn sorted_unstable_by_key() { let sc = [3, 4, 1, 2].iter().cloned().sorted_unstable_by_key(|&x| x); it::assert_equal(sc, vec![1, 2, 3, 4]); let v = (0..5).sorted_unstable_by_key(|&x| -x); it::assert_equal(v, vec![4, 3, 2, 1, 0]); } #[test] fn sorted_by() { let sc = [3, 4, 1, 2].iter().cloned().sorted_by(|&a, &b| a.cmp(&b)); it::assert_equal(sc, vec![1, 2, 3, 4]); let v = (0..5).sorted_by(|&a, &b| a.cmp(&b).reverse()); it::assert_equal(v, vec![4, 3, 2, 1, 0]); } #[cfg(not(miri))] qc::quickcheck! { fn k_smallest_range(n: i64, m: u16, k: u16) -> () { // u16 is used to constrain k and m to 0..2¹⁶, // otherwise the test could use too much memory. let (k, m) = (k as usize, m as u64); let mut v: Vec<_> = (n..n.saturating_add(m as _)).collect(); // Generate a random permutation of n..n+m v.shuffle(&mut thread_rng()); // Construct the right answers for the top and bottom elements let mut sorted = v.clone(); sorted.sort(); // how many elements are we checking let num_elements = min(k, m as _); // Compute the top and bottom k in various combinations let sorted_smallest = sorted[..num_elements].iter().cloned(); let smallest = v.iter().cloned().k_smallest(k); let smallest_by = v.iter().cloned().k_smallest_by(k, Ord::cmp); let smallest_by_key = v.iter().cloned().k_smallest_by_key(k, |&x| x); let sorted_largest = sorted[sorted.len() - num_elements..].iter().rev().cloned(); let largest = v.iter().cloned().k_largest(k); let largest_by = v.iter().cloned().k_largest_by(k, Ord::cmp); let largest_by_key = v.iter().cloned().k_largest_by_key(k, |&x| x); // Check the variations produce the same answers and that they're right it::assert_equal(smallest, sorted_smallest.clone()); it::assert_equal(smallest_by, sorted_smallest.clone()); it::assert_equal(smallest_by_key, sorted_smallest); it::assert_equal(largest, sorted_largest.clone()); it::assert_equal(largest_by, sorted_largest.clone()); it::assert_equal(largest_by_key, sorted_largest); } fn k_smallest_relaxed_range(n: i64, m: u16, k: u16) -> () { // u16 is used to constrain k and m to 0..2¹⁶, // otherwise the test could use too much memory. let (k, m) = (k as usize, m as u64); let mut v: Vec<_> = (n..n.saturating_add(m as _)).collect(); // Generate a random permutation of n..n+m v.shuffle(&mut thread_rng()); // Construct the right answers for the top and bottom elements let mut sorted = v.clone(); sorted.sort(); // how many elements are we checking let num_elements = min(k, m as _); // Compute the top and bottom k in various combinations let sorted_smallest = sorted[..num_elements].iter().cloned(); let smallest = v.iter().cloned().k_smallest_relaxed(k); let smallest_by = v.iter().cloned().k_smallest_relaxed_by(k, Ord::cmp); let smallest_by_key = v.iter().cloned().k_smallest_relaxed_by_key(k, |&x| x); let sorted_largest = sorted[sorted.len() - num_elements..].iter().rev().cloned(); let largest = v.iter().cloned().k_largest_relaxed(k); let largest_by = v.iter().cloned().k_largest_relaxed_by(k, Ord::cmp); let largest_by_key = v.iter().cloned().k_largest_relaxed_by_key(k, |&x| x); // Check the variations produce the same answers and that they're right it::assert_equal(smallest, sorted_smallest.clone()); it::assert_equal(smallest_by, sorted_smallest.clone()); it::assert_equal(smallest_by_key, sorted_smallest); it::assert_equal(largest, sorted_largest.clone()); it::assert_equal(largest_by, sorted_largest.clone()); it::assert_equal(largest_by_key, sorted_largest); } } #[derive(Clone, Debug)] struct RandIter { idx: usize, len: usize, rng: R, _t: PhantomData, } impl Iterator for RandIter where Standard: Distribution, { type Item = T; fn next(&mut self) -> Option { if self.idx == self.len { None } else { self.idx += 1; Some(self.rng.gen()) } } } impl qc::Arbitrary for RandIter { fn arbitrary(g: &mut G) -> Self { Self { idx: 0, len: g.size(), rng: R::seed_from_u64(g.next_u64()), _t: PhantomData {}, } } } // Check that taking the k smallest is the same as // sorting then taking the k first elements fn k_smallest_sort(i: I, k: u16) where I: Iterator + Clone, I::Item: Ord + Debug, { let j = i.clone(); let i1 = i.clone(); let j1 = i.clone(); let k = k as usize; it::assert_equal(i.k_smallest(k), j.sorted().take(k)); it::assert_equal(i1.k_smallest_relaxed(k), j1.sorted().take(k)); } // Similar to `k_smallest_sort` but for our custom heap implementation. fn k_smallest_by_sort(i: I, k: u16) where I: Iterator + Clone, I::Item: Ord + Debug, { let j = i.clone(); let i1 = i.clone(); let j1 = i.clone(); let k = k as usize; it::assert_equal(i.k_smallest_by(k, Ord::cmp), j.sorted().take(k)); it::assert_equal(i1.k_smallest_relaxed_by(k, Ord::cmp), j1.sorted().take(k)); } macro_rules! generic_test { ($f:ident, $($t:ty),+) => { $(paste::item! { qc::quickcheck! { fn [< $f _ $t >](i: RandIter<$t>, k: u16) -> () { $f(i, k) } } })+ }; } #[cfg(not(miri))] generic_test!(k_smallest_sort, u8, u16, u32, u64, i8, i16, i32, i64); #[cfg(not(miri))] generic_test!(k_smallest_by_sort, u8, u16, u32, u64, i8, i16, i32, i64); #[test] fn sorted_by_key() { let sc = [3, 4, 1, 2].iter().cloned().sorted_by_key(|&x| x); it::assert_equal(sc, vec![1, 2, 3, 4]); let v = (0..5).sorted_by_key(|&x| -x); it::assert_equal(v, vec![4, 3, 2, 1, 0]); } #[test] fn sorted_by_cached_key() { // Track calls to key function let mut ncalls = 0; let sorted = [3, 4, 1, 2].iter().cloned().sorted_by_cached_key(|&x| { ncalls += 1; x.to_string() }); it::assert_equal(sorted, vec![1, 2, 3, 4]); // Check key function called once per element assert_eq!(ncalls, 4); let mut ncalls = 0; let sorted = (0..5).sorted_by_cached_key(|&x| { ncalls += 1; -x }); it::assert_equal(sorted, vec![4, 3, 2, 1, 0]); // Check key function called once per element assert_eq!(ncalls, 5); } #[test] fn test_multipeek() { let nums = vec![1u8, 2, 3, 4, 5]; let mp = multipeek(nums.iter().copied()); assert_eq!(nums, mp.collect::>()); let mut mp = multipeek(nums.iter().copied()); assert_eq!(mp.peek(), Some(&1)); assert_eq!(mp.next(), Some(1)); assert_eq!(mp.peek(), Some(&2)); assert_eq!(mp.peek(), Some(&3)); assert_eq!(mp.next(), Some(2)); assert_eq!(mp.peek(), Some(&3)); assert_eq!(mp.peek(), Some(&4)); assert_eq!(mp.peek(), Some(&5)); assert_eq!(mp.peek(), None); assert_eq!(mp.next(), Some(3)); assert_eq!(mp.next(), Some(4)); assert_eq!(mp.peek(), Some(&5)); assert_eq!(mp.peek(), None); assert_eq!(mp.next(), Some(5)); assert_eq!(mp.next(), None); assert_eq!(mp.peek(), None); } #[test] fn test_multipeek_reset() { let data = [1, 2, 3, 4]; let mut mp = multipeek(cloned(&data)); assert_eq!(mp.peek(), Some(&1)); assert_eq!(mp.next(), Some(1)); assert_eq!(mp.peek(), Some(&2)); assert_eq!(mp.peek(), Some(&3)); mp.reset_peek(); assert_eq!(mp.peek(), Some(&2)); assert_eq!(mp.next(), Some(2)); } #[test] fn test_multipeek_peeking_next() { use crate::it::PeekingNext; let nums = [1u8, 2, 3, 4, 5, 6, 7]; let mut mp = multipeek(nums.iter().copied()); assert_eq!(mp.peeking_next(|&x| x != 0), Some(1)); assert_eq!(mp.next(), Some(2)); assert_eq!(mp.peek(), Some(&3)); assert_eq!(mp.peek(), Some(&4)); assert_eq!(mp.peeking_next(|&x| x == 3), Some(3)); assert_eq!(mp.peek(), Some(&4)); assert_eq!(mp.peeking_next(|&x| x != 4), None); assert_eq!(mp.peeking_next(|&x| x == 4), Some(4)); assert_eq!(mp.peek(), Some(&5)); assert_eq!(mp.peek(), Some(&6)); assert_eq!(mp.peeking_next(|&x| x != 5), None); assert_eq!(mp.peek(), Some(&7)); assert_eq!(mp.peeking_next(|&x| x == 5), Some(5)); assert_eq!(mp.peeking_next(|&x| x == 6), Some(6)); assert_eq!(mp.peek(), Some(&7)); assert_eq!(mp.peek(), None); assert_eq!(mp.next(), Some(7)); assert_eq!(mp.peek(), None); } #[test] fn test_repeat_n_peeking_next() { use crate::it::PeekingNext; let mut rn = repeat_n(0, 5); assert_eq!(rn.peeking_next(|&x| x != 0), None); assert_eq!(rn.peeking_next(|&x| x <= 0), Some(0)); assert_eq!(rn.next(), Some(0)); assert_eq!(rn.peeking_next(|&x| x <= 0), Some(0)); assert_eq!(rn.peeking_next(|&x| x != 0), None); assert_eq!(rn.peeking_next(|&x| x >= 0), Some(0)); assert_eq!(rn.next(), Some(0)); assert_eq!(rn.peeking_next(|&x| x <= 0), None); assert_eq!(rn.next(), None); } #[test] fn test_peek_nth() { let nums = vec![1u8, 2, 3, 4, 5]; let iter = peek_nth(nums.iter().copied()); assert_eq!(nums, iter.collect::>()); let mut iter = peek_nth(nums.iter().copied()); assert_eq!(iter.peek_nth(0), Some(&1)); assert_eq!(iter.peek_nth(0), Some(&1)); assert_eq!(iter.next(), Some(1)); assert_eq!(iter.peek_nth(0), Some(&2)); assert_eq!(iter.peek_nth(1), Some(&3)); assert_eq!(iter.next(), Some(2)); assert_eq!(iter.peek_nth(0), Some(&3)); assert_eq!(iter.peek_nth(1), Some(&4)); assert_eq!(iter.peek_nth(2), Some(&5)); assert_eq!(iter.peek_nth(3), None); assert_eq!(iter.next(), Some(3)); assert_eq!(iter.next(), Some(4)); assert_eq!(iter.peek_nth(0), Some(&5)); assert_eq!(iter.peek_nth(1), None); assert_eq!(iter.next(), Some(5)); assert_eq!(iter.next(), None); assert_eq!(iter.peek_nth(0), None); assert_eq!(iter.peek_nth(1), None); } #[test] fn test_peek_nth_peeking_next() { use it::PeekingNext; let nums = [1u8, 2, 3, 4, 5, 6, 7]; let mut iter = peek_nth(nums.iter().copied()); assert_eq!(iter.peeking_next(|&x| x != 0), Some(1)); assert_eq!(iter.next(), Some(2)); assert_eq!(iter.peek_nth(0), Some(&3)); assert_eq!(iter.peek_nth(1), Some(&4)); assert_eq!(iter.peeking_next(|&x| x == 3), Some(3)); assert_eq!(iter.peek(), Some(&4)); assert_eq!(iter.peeking_next(|&x| x != 4), None); assert_eq!(iter.peeking_next(|&x| x == 4), Some(4)); assert_eq!(iter.peek_nth(0), Some(&5)); assert_eq!(iter.peek_nth(1), Some(&6)); assert_eq!(iter.peeking_next(|&x| x != 5), None); assert_eq!(iter.peek(), Some(&5)); assert_eq!(iter.peeking_next(|&x| x == 5), Some(5)); assert_eq!(iter.peeking_next(|&x| x == 6), Some(6)); assert_eq!(iter.peek_nth(0), Some(&7)); assert_eq!(iter.peek_nth(1), None); assert_eq!(iter.next(), Some(7)); assert_eq!(iter.peek(), None); } #[test] fn test_peek_nth_next_if() { let nums = [1u8, 2, 3, 4, 5, 6, 7]; let mut iter = peek_nth(nums.iter().copied()); assert_eq!(iter.next_if(|&x| x != 0), Some(1)); assert_eq!(iter.next(), Some(2)); assert_eq!(iter.peek_nth(0), Some(&3)); assert_eq!(iter.peek_nth(1), Some(&4)); assert_eq!(iter.next_if_eq(&3), Some(3)); assert_eq!(iter.peek(), Some(&4)); assert_eq!(iter.next_if(|&x| x != 4), None); assert_eq!(iter.next_if_eq(&4), Some(4)); assert_eq!(iter.peek_nth(0), Some(&5)); assert_eq!(iter.peek_nth(1), Some(&6)); assert_eq!(iter.next_if(|&x| x != 5), None); assert_eq!(iter.peek(), Some(&5)); assert_eq!(iter.next_if(|&x| x % 2 == 1), Some(5)); assert_eq!(iter.next_if_eq(&6), Some(6)); assert_eq!(iter.peek_nth(0), Some(&7)); assert_eq!(iter.peek_nth(1), None); assert_eq!(iter.next(), Some(7)); assert_eq!(iter.peek(), None); } #[test] fn pad_using() { it::assert_equal((0..0).pad_using(1, |_| 1), 1..2); let v: Vec = vec![0, 1, 2]; let r = v.into_iter().pad_using(5, |n| n); it::assert_equal(r, vec![0, 1, 2, 3, 4]); let v: Vec = vec![0, 1, 2]; let r = v.into_iter().pad_using(1, |_| panic!()); it::assert_equal(r, vec![0, 1, 2]); } #[test] fn chunk_by() { for (ch1, sub) in &"AABBCCC".chars().chunk_by(|&x| x) { for ch2 in sub { assert_eq!(ch1, ch2); } } for (ch1, sub) in &"AAABBBCCCCDDDD".chars().chunk_by(|&x| x) { for ch2 in sub { assert_eq!(ch1, ch2); if ch1 == 'C' { break; } } } let toupper = |ch: &char| ch.to_uppercase().next().unwrap(); // try all possible orderings for indices in permutohedron::Heap::new(&mut [0, 1, 2, 3]) { let chunks = "AaaBbbccCcDDDD".chars().chunk_by(&toupper); let mut subs = chunks.into_iter().collect_vec(); for &idx in &indices[..] { let (key, text) = match idx { 0 => ('A', "Aaa".chars()), 1 => ('B', "Bbb".chars()), 2 => ('C', "ccCc".chars()), 3 => ('D', "DDDD".chars()), _ => unreachable!(), }; assert_eq!(key, subs[idx].0); it::assert_equal(&mut subs[idx].1, text); } } let chunks = "AAABBBCCCCDDDD".chars().chunk_by(|&x| x); let mut subs = chunks.into_iter().map(|(_, g)| g).collect_vec(); let sd = subs.pop().unwrap(); let sc = subs.pop().unwrap(); let sb = subs.pop().unwrap(); let sa = subs.pop().unwrap(); for (a, b, c, d) in multizip((sa, sb, sc, sd)) { assert_eq!(a, 'A'); assert_eq!(b, 'B'); assert_eq!(c, 'C'); assert_eq!(d, 'D'); } // check that the key closure is called exactly n times { let mut ntimes = 0; let text = "AABCCC"; for (_, sub) in &text.chars().chunk_by(|&x| { ntimes += 1; x }) { for _ in sub {} } assert_eq!(ntimes, text.len()); } { let mut ntimes = 0; let text = "AABCCC"; for _ in &text.chars().chunk_by(|&x| { ntimes += 1; x }) {} assert_eq!(ntimes, text.len()); } { let text = "ABCCCDEEFGHIJJKK"; let gr = text.chars().chunk_by(|&x| x); it::assert_equal(gr.into_iter().flat_map(|(_, sub)| sub), text.chars()); } } #[test] fn chunk_by_lazy_2() { let data = [0, 1]; let chunks = data.iter().chunk_by(|k| *k); let gs = chunks.into_iter().collect_vec(); it::assert_equal(data.iter(), gs.into_iter().flat_map(|(_k, g)| g)); let data = [0, 1, 1, 0, 0]; let chunks = data.iter().chunk_by(|k| *k); let mut gs = chunks.into_iter().collect_vec(); gs[1..].reverse(); it::assert_equal(&[0, 0, 0, 1, 1], gs.into_iter().flat_map(|(_, g)| g)); let grouper = data.iter().chunk_by(|k| *k); let mut chunks = Vec::new(); for (k, chunk) in &grouper { if *k == 1 { chunks.push(chunk); } } it::assert_equal(&mut chunks[0], &[1, 1]); let data = [0, 0, 0, 1, 1, 0, 0, 2, 2, 3, 3]; let grouper = data.iter().chunk_by(|k| *k); let mut chunks = Vec::new(); for (i, (_, chunk)) in grouper.into_iter().enumerate() { if i < 2 { chunks.push(chunk); } else if i < 4 { for _ in chunk {} } else { chunks.push(chunk); } } it::assert_equal(&mut chunks[0], &[0, 0, 0]); it::assert_equal(&mut chunks[1], &[1, 1]); it::assert_equal(&mut chunks[2], &[3, 3]); let data = [0, 0, 0, 1, 1, 0, 0, 2, 2, 3, 3]; let mut i = 0; let grouper = data.iter().chunk_by(move |_| { let k = i / 3; i += 1; k }); for (i, chunk) in &grouper { match i { 0 => it::assert_equal(chunk, &[0, 0, 0]), 1 => it::assert_equal(chunk, &[1, 1, 0]), 2 => it::assert_equal(chunk, &[0, 2, 2]), 3 => it::assert_equal(chunk, &[3, 3]), _ => unreachable!(), } } } #[test] fn chunk_by_lazy_3() { // test consuming each chunk on the lap after it was produced let data = [0, 0, 0, 1, 1, 0, 0, 1, 1, 2, 2]; let grouper = data.iter().chunk_by(|elt| *elt); let mut last = None; for (key, chunk) in &grouper { if let Some(gr) = last.take() { for elt in gr { assert!(elt != key && i32::abs(elt - key) == 1); } } last = Some(chunk); } } #[test] fn chunks() { let data = [0, 0, 0, 1, 1, 0, 0, 2, 2, 3, 3]; let grouper = data.iter().chunks(3); for (i, chunk) in grouper.into_iter().enumerate() { match i { 0 => it::assert_equal(chunk, &[0, 0, 0]), 1 => it::assert_equal(chunk, &[1, 1, 0]), 2 => it::assert_equal(chunk, &[0, 2, 2]), 3 => it::assert_equal(chunk, &[3, 3]), _ => unreachable!(), } } } #[test] fn concat_empty() { let data: Vec> = Vec::new(); assert_eq!(data.into_iter().concat(), Vec::new()) } #[test] fn concat_non_empty() { let data = vec![vec![1, 2, 3], vec![4, 5, 6], vec![7, 8, 9]]; assert_eq!(data.into_iter().concat(), vec![1, 2, 3, 4, 5, 6, 7, 8, 9]) } #[test] fn combinations() { assert!((1..3).combinations(5).next().is_none()); let it = (1..3).combinations(2); it::assert_equal(it, vec![vec![1, 2]]); let it = (1..5).combinations(2); it::assert_equal( it, vec![ vec![1, 2], vec![1, 3], vec![1, 4], vec![2, 3], vec![2, 4], vec![3, 4], ], ); it::assert_equal((0..0).tuple_combinations::<(_, _)>(), >::new()); it::assert_equal((0..1).tuple_combinations::<(_, _)>(), >::new()); it::assert_equal((0..2).tuple_combinations::<(_, _)>(), vec![(0, 1)]); it::assert_equal((0..0).combinations(2), >>::new()); it::assert_equal((0..1).combinations(1), vec![vec![0]]); it::assert_equal((0..2).combinations(1), vec![vec![0], vec![1]]); it::assert_equal((0..2).combinations(2), vec![vec![0, 1]]); } #[test] fn combinations_of_too_short() { for i in 1..10 { assert!((0..0).combinations(i).next().is_none()); assert!((0..i - 1).combinations(i).next().is_none()); } } #[test] fn combinations_zero() { it::assert_equal((1..3).combinations(0), vec![vec![]]); it::assert_equal((0..0).combinations(0), vec![vec![]]); } fn binomial(n: usize, k: usize) -> usize { if k > n { 0 } else { (n - k + 1..=n).product::() / (1..=k).product::() } } #[test] fn combinations_range_count() { for n in 0..=7 { for k in 0..=7 { let len = binomial(n, k); let mut it = (0..n).combinations(k); assert_eq!(len, it.clone().count()); assert_eq!(len, it.size_hint().0); assert_eq!(Some(len), it.size_hint().1); for count in (0..len).rev() { let elem = it.next(); assert!(elem.is_some()); assert_eq!(count, it.clone().count()); assert_eq!(count, it.size_hint().0); assert_eq!(Some(count), it.size_hint().1); } let should_be_none = it.next(); assert!(should_be_none.is_none()); } } } #[test] fn combinations_inexact_size_hints() { for k in 0..=7 { let mut numbers = (0..18).filter(|i| i % 2 == 0); // 9 elements let mut it = numbers.clone().combinations(k); let real_n = numbers.clone().count(); let len = binomial(real_n, k); assert_eq!(len, it.clone().count()); let mut nb_loaded = 0; let sh = numbers.size_hint(); assert_eq!(binomial(sh.0 + nb_loaded, k), it.size_hint().0); assert_eq!(sh.1.map(|n| binomial(n + nb_loaded, k)), it.size_hint().1); for next_count in 1..=len { let elem = it.next(); assert!(elem.is_some()); assert_eq!(len - next_count, it.clone().count()); if next_count == 1 { // The very first time, the lazy buffer is prefilled. nb_loaded = numbers.by_ref().take(k).count(); } else { // Then it loads one item each time until exhausted. let nb = numbers.next(); if nb.is_some() { nb_loaded += 1; } } let sh = numbers.size_hint(); if next_count > real_n - k + 1 { assert_eq!(0, sh.0); assert_eq!(Some(0), sh.1); assert_eq!(real_n, nb_loaded); // Once it's fully loaded, size hints of `it` are exacts. } assert_eq!(binomial(sh.0 + nb_loaded, k) - next_count, it.size_hint().0); assert_eq!( sh.1.map(|n| binomial(n + nb_loaded, k) - next_count), it.size_hint().1 ); } let should_be_none = it.next(); assert!(should_be_none.is_none()); } } #[test] fn permutations_zero() { it::assert_equal((1..3).permutations(0), vec![vec![]]); it::assert_equal((0..0).permutations(0), vec![vec![]]); } #[test] fn permutations_range_count() { for n in 0..=4 { for k in 0..=4 { let len = if k <= n { (n - k + 1..=n).product() } else { 0 }; let mut it = (0..n).permutations(k); assert_eq!(len, it.clone().count()); assert_eq!(len, it.size_hint().0); assert_eq!(Some(len), it.size_hint().1); for count in (0..len).rev() { let elem = it.next(); assert!(elem.is_some()); assert_eq!(count, it.clone().count()); assert_eq!(count, it.size_hint().0); assert_eq!(Some(count), it.size_hint().1); } let should_be_none = it.next(); assert!(should_be_none.is_none()); } } } #[test] fn permutations_overflowed_size_hints() { let mut it = std::iter::repeat(()).permutations(2); assert_eq!(it.size_hint().0, usize::MAX); assert_eq!(it.size_hint().1, None); for nb_generated in 1..=1000 { it.next(); assert!(it.size_hint().0 >= usize::MAX - nb_generated); assert_eq!(it.size_hint().1, None); } } #[test] #[cfg(not(miri))] fn combinations_with_replacement() { // Pool smaller than n it::assert_equal((0..1).combinations_with_replacement(2), vec![vec![0, 0]]); // Pool larger than n it::assert_equal( (0..3).combinations_with_replacement(2), vec![ vec![0, 0], vec![0, 1], vec![0, 2], vec![1, 1], vec![1, 2], vec![2, 2], ], ); // Zero size it::assert_equal((0..3).combinations_with_replacement(0), vec![vec![]]); // Zero size on empty pool it::assert_equal((0..0).combinations_with_replacement(0), vec![vec![]]); // Empty pool it::assert_equal( (0..0).combinations_with_replacement(2), >>::new(), ); } #[test] fn combinations_with_replacement_range_count() { for n in 0..=4 { for k in 0..=4 { let len = binomial(usize::saturating_sub(n + k, 1), k); let mut it = (0..n).combinations_with_replacement(k); assert_eq!(len, it.clone().count()); assert_eq!(len, it.size_hint().0); assert_eq!(Some(len), it.size_hint().1); for count in (0..len).rev() { let elem = it.next(); assert!(elem.is_some()); assert_eq!(count, it.clone().count()); assert_eq!(count, it.size_hint().0); assert_eq!(Some(count), it.size_hint().1); } let should_be_none = it.next(); assert!(should_be_none.is_none()); } } } #[test] fn powerset() { it::assert_equal((0..0).powerset(), vec![vec![]]); it::assert_equal((0..1).powerset(), vec![vec![], vec![0]]); it::assert_equal( (0..2).powerset(), vec![vec![], vec![0], vec![1], vec![0, 1]], ); it::assert_equal( (0..3).powerset(), vec![ vec![], vec![0], vec![1], vec![2], vec![0, 1], vec![0, 2], vec![1, 2], vec![0, 1, 2], ], ); assert_eq!((0..4).powerset().count(), 1 << 4); assert_eq!((0..8).powerset().count(), 1 << 8); assert_eq!((0..16).powerset().count(), 1 << 16); for n in 0..=4 { let mut it = (0..n).powerset(); let len = 2_usize.pow(n); assert_eq!(len, it.clone().count()); assert_eq!(len, it.size_hint().0); assert_eq!(Some(len), it.size_hint().1); for count in (0..len).rev() { let elem = it.next(); assert!(elem.is_some()); assert_eq!(count, it.clone().count()); assert_eq!(count, it.size_hint().0); assert_eq!(Some(count), it.size_hint().1); } let should_be_none = it.next(); assert!(should_be_none.is_none()); } } #[test] fn diff_mismatch() { let a = [1, 2, 3, 4]; let b = vec![1.0, 5.0, 3.0, 4.0]; let b_map = b.into_iter().map(|f| f as i32); let diff = it::diff_with(a.iter(), b_map, |a, b| *a == b); assert!(match diff { Some(it::Diff::FirstMismatch(1, _, from_diff)) => from_diff.collect::>() == vec![5, 3, 4], _ => false, }); } #[test] fn diff_longer() { let a = [1, 2, 3, 4]; let b = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0]; let b_map = b.into_iter().map(|f| f as i32); let diff = it::diff_with(a.iter(), b_map, |a, b| *a == b); assert!(match diff { Some(it::Diff::Longer(_, remaining)) => remaining.collect::>() == vec![5, 6], _ => false, }); } #[test] fn diff_shorter() { let a = [1, 2, 3, 4]; let b = vec![1.0, 2.0]; let b_map = b.into_iter().map(|f| f as i32); let diff = it::diff_with(a.iter(), b_map, |a, b| *a == b); assert!(match diff { Some(it::Diff::Shorter(len, _)) => len == 2, _ => false, }); } #[test] fn extrema_set() { use std::cmp::Ordering; // A peculiar type: Equality compares both tuple items, but ordering only the // first item. Used to distinguish equal elements. #[derive(Clone, Debug, PartialEq, Eq)] struct Val(u32, u32); impl PartialOrd for Val { fn partial_cmp(&self, other: &Self) -> Option { Some(self.cmp(other)) } } impl Ord for Val { fn cmp(&self, other: &Self) -> Ordering { self.0.cmp(&other.0) } } assert_eq!(None::.iter().min_set(), Vec::<&u32>::new()); assert_eq!(None::.iter().max_set(), Vec::<&u32>::new()); assert_eq!(Some(1u32).iter().min_set(), vec![&1]); assert_eq!(Some(1u32).iter().max_set(), vec![&1]); let data = [Val(0, 1), Val(2, 0), Val(0, 2), Val(1, 0), Val(2, 1)]; let min_set = data.iter().min_set(); assert_eq!(min_set, vec![&Val(0, 1), &Val(0, 2)]); let min_set_by_key = data.iter().min_set_by_key(|v| v.1); assert_eq!(min_set_by_key, vec![&Val(2, 0), &Val(1, 0)]); let min_set_by = data.iter().min_set_by(|x, y| x.1.cmp(&y.1)); assert_eq!(min_set_by, vec![&Val(2, 0), &Val(1, 0)]); let max_set = data.iter().max_set(); assert_eq!(max_set, vec![&Val(2, 0), &Val(2, 1)]); let max_set_by_key = data.iter().max_set_by_key(|v| v.1); assert_eq!(max_set_by_key, vec![&Val(0, 2)]); let max_set_by = data.iter().max_set_by(|x, y| x.1.cmp(&y.1)); assert_eq!(max_set_by, vec![&Val(0, 2)]); } #[test] fn minmax() { use crate::it::MinMaxResult; use std::cmp::Ordering; // A peculiar type: Equality compares both tuple items, but ordering only the // first item. This is so we can check the stability property easily. #[derive(Clone, Debug, PartialEq, Eq)] struct Val(u32, u32); impl PartialOrd for Val { fn partial_cmp(&self, other: &Self) -> Option { Some(self.cmp(other)) } } impl Ord for Val { fn cmp(&self, other: &Self) -> Ordering { self.0.cmp(&other.0) } } assert_eq!( None::>.iter().minmax(), MinMaxResult::NoElements ); assert_eq!(Some(1u32).iter().minmax(), MinMaxResult::OneElement(&1)); let data = [Val(0, 1), Val(2, 0), Val(0, 2), Val(1, 0), Val(2, 1)]; let minmax = data.iter().minmax(); assert_eq!(minmax, MinMaxResult::MinMax(&Val(0, 1), &Val(2, 1))); let (min, max) = data.iter().minmax_by_key(|v| v.1).into_option().unwrap(); assert_eq!(min, &Val(2, 0)); assert_eq!(max, &Val(0, 2)); let (min, max) = data .iter() .minmax_by(|x, y| x.1.cmp(&y.1)) .into_option() .unwrap(); assert_eq!(min, &Val(2, 0)); assert_eq!(max, &Val(0, 2)); } #[test] fn format() { let data = [0, 1, 2, 3]; let ans1 = "0, 1, 2, 3"; let ans2 = "0--1--2--3"; let t1 = format!("{}", data.iter().format(", ")); assert_eq!(t1, ans1); let t2 = format!("{:?}", data.iter().format("--")); assert_eq!(t2, ans2); let dataf = [1.1, 5.71828, -22.]; let t3 = format!("{:.2e}", dataf.iter().format(", ")); assert_eq!(t3, "1.10e0, 5.72e0, -2.20e1"); } #[test] fn while_some() { let ns = (1..10) .map(|x| if x % 5 != 0 { Some(x) } else { None }) .while_some(); it::assert_equal(ns, vec![1, 2, 3, 4]); } #[test] fn fold_while() { let mut iterations = 0; let vec = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; let sum = vec .into_iter() .fold_while(0, |acc, item| { iterations += 1; let new_sum = acc + item; if new_sum <= 20 { FoldWhile::Continue(new_sum) } else { FoldWhile::Done(acc) } }) .into_inner(); assert_eq!(iterations, 6); assert_eq!(sum, 15); } #[test] fn tree_reduce() { let x = [ "", "0", "0 1 x", "0 1 x 2 x", "0 1 x 2 3 x x", "0 1 x 2 3 x x 4 x", "0 1 x 2 3 x x 4 5 x x", "0 1 x 2 3 x x 4 5 x 6 x x", "0 1 x 2 3 x x 4 5 x 6 7 x x x", "0 1 x 2 3 x x 4 5 x 6 7 x x x 8 x", "0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x x", "0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x 10 x x", "0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x 10 11 x x x", "0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x 10 11 x x 12 x x", "0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x 10 11 x x 12 13 x x x", "0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x 10 11 x x 12 13 x 14 x x x", "0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x 10 11 x x 12 13 x 14 15 x x x x", ]; for (i, &s) in x.iter().enumerate() { let expected = if s.is_empty() { None } else { Some(s.to_string()) }; let num_strings = (0..i).map(|x| x.to_string()); let actual = num_strings.tree_reduce(|a, b| format!("{} {} x", a, b)); assert_eq!(actual, expected); } } #[test] fn exactly_one_question_mark_syntax_works() { exactly_one_question_mark_return().unwrap_err(); } fn exactly_one_question_mark_return() -> Result<(), ExactlyOneError>> { [].iter().exactly_one()?; Ok(()) } #[test] fn multiunzip() { let (a, b, c): (Vec<_>, Vec<_>, Vec<_>) = [(0, 1, 2), (3, 4, 5), (6, 7, 8)] .iter() .cloned() .multiunzip(); assert_eq!((a, b, c), (vec![0, 3, 6], vec![1, 4, 7], vec![2, 5, 8])); let (): () = [(), (), ()].iter().cloned().multiunzip(); #[allow(clippy::type_complexity)] let t: ( Vec<_>, Vec<_>, Vec<_>, Vec<_>, Vec<_>, Vec<_>, Vec<_>, Vec<_>, Vec<_>, Vec<_>, Vec<_>, Vec<_>, ) = [(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)] .iter() .cloned() .multiunzip(); assert_eq!( t, ( vec![0], vec![1], vec![2], vec![3], vec![4], vec![5], vec![6], vec![7], vec![8], vec![9], vec![10], vec![11] ) ); }